Synchronous Decoupled Motion Control for Power-Wheelchairs

2012 ◽  
Vol 482-484 ◽  
pp. 1904-1911 ◽  
Author(s):  
Fu Yun Yang ◽  
Mi Ching Tsai

Unanticipated disturbances in outdoor environments are the main impediments to the development of motion control for transmission vehicles. Classical synchronous approaches which neglect the mechanical coupling effect are unsuitable for such types of mechanisms. To address this concern, much effort has been made to overcome such difficulties. A synchronous decoupled control framework was proposed based on the multivariable model, in which a decoupling transformation matrix was adopted for improving the corresponding performance. The concept of the proposed control framework is intuitive and quite straightforward. To demonstrate the capacity of the mathematical model as well as the effectiveness of the control scheme, a power-wheelchair was utilized as an illustrated example, where the synchronous performance can be enhanced by almost 50% as compared to the classic approach.

2014 ◽  
Vol 527 ◽  
pp. 140-145
Author(s):  
Da Xu Zhao ◽  
Bai Chen ◽  
Guo Zhong Shou ◽  
Yu Qi Gu

In view of the existing problems of traditional interventional catheters, particularly poor activity, operation difficulty and mass blind area, a novel interventional catheter with a cable-driven active head-end is proposed, and a prototype was built to verify the performance. This paper deals with the kinematics and dynamics of the cable-driven prototype, a dynamic model based on Kanes method combined with screw theory was presented in this paper. According the mathematical model and the prototypes structure, the analysis of kinematics and dynamics of active head-end-end is done in the environment of Mathematica. The needed driving forces of every joint when the system moving along planned trajectory are calculated. The results can provide a basis for the structure design and motion control of the interventional active catheter.


2017 ◽  
Vol 53 (2) ◽  
pp. 74-75 ◽  
Author(s):  
Yunong Zhang ◽  
Liangyu He ◽  
Shuai Li ◽  
Dechao Chen ◽  
Yaqiong Ding

2014 ◽  
Vol 697 ◽  
pp. 181-186
Author(s):  
Zi Lei Wang ◽  
Tian De Qiu

The piezoelectric field and structure field of piezoelectric resonator of ultrasonic motor are intercoupling. It is difficult to obtain the solution under some circumstances because of the complex stress boundary condition and the influence of coupling effect. An electro-mechanical coupling finite-element dynamic equation is established on the basis of the Hamilton’s Principle about piezoceramic and elastomer. The equation is decoupled through the shock excitation of the piezoelectric resonator and the piezoelectricity element and material provided by finite-element analysis. As a result, an admittance curve as well as the distribution status of the nodal DOF is obtained, which provides an effective method to solve electro-mechanical coupling problems.


2019 ◽  
Vol 9 (15) ◽  
pp. 3052
Author(s):  
Jiafu Yin ◽  
Dongmei Zhao

Due to the potential of thermal storage being similar to that of the conventional battery, air conditioning (AC) has gained great popularity for its potential to provide ancillary services and emergency reserves. In order to integrate numerous inverter ACs into secondary frequency control, a hierarchical distributed control framework which incorporates a virtual battery model of inverter AC is developed. A comprehensive derivation of a second-order virtual battery model has been strictly posed to formulate the frequency response characteristics of inverter AC. In the hierarchical control scheme, a modified control performance index is utilized to evaluate the available capacity of traditional regulation generators. A coordinated frequency control strategy is derived to exploit the complementary and advantageous characteristics of regulation generators and aggregated AC. A distributed consensus control strategy is developed to guarantee the fair participation of heterogeneous AC in frequency regulation. The finite-time consensus protocol is introduced to ensure the fast convergence of power tracking and the state-of-charge (SOC) consistency of numerous ACs. The effectiveness of the proposed control strategy is validated by a variety of illustrative examples.


2011 ◽  
Vol 383-390 ◽  
pp. 5997-6002
Author(s):  
Jiao Wen ◽  
Xiao Ming Liu ◽  
Zhong Gan Zhu ◽  
Ming Cai

This paper proposes an improved design of micro-machined tuning fork gyroscope (M-TFG) to better decouple the cross talk between the driving and sensing directions and to increase resolution. By employing dual-folds spring suspension, the drive mode and the sense mode are mechanically decoupled. Through careful layout design of the location of the dual-folds spring suspension and the drive combs, the mechanical coupling effect is further decreased by isolating the unwanted excitation from detection. The peripheral circuit is also the important part to realize the function of the gyro system. Since the analog circuit has some inherent shortcomings, which has limited the accuracy of the gyro. In this paper, a digital control system for micro-comb is introduced.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaokun Leng ◽  
Songhao Piao ◽  
Lin Chang ◽  
Zhicheng He ◽  
Zheng Zhu

Biped robot research has always been a research focus in the field of robot research. Among them, the motion control system, as the core content of the biped robot research, directly determines the stability of the robot walking. Traditional biped robot control methods suffer from low model accuracy, poor dynamic characteristics of motion controllers, and poor motion robustness. In order to improve the walking robustness of the biped robot, this paper solves the problem from three aspects: planning method, mathematical model, and control method, forming a robot motion control framework based on the whole-body dynamics model and quadratic planning. The robot uses divergent component of motion for trajectory planning and introduces the friction cone contact model into the control frame to improve the accuracy of the model. A complete constraint equation system can ensure that the solution of the controller meets the dynamic characteristics of the biped robot. An optimal controller is designed based on the control framework, and starting from the Lyapunov function, the convergence of the optimal controller is proved. Finally, the experimental results show that the method is robust and has certain anti-interference ability.


Author(s):  
Zhensheng Yuan ◽  
Weixin Li ◽  
Jingyi Xu ◽  
Wenjing Wu ◽  
Zhenmao Chen

Aiming to simulate the dynamical response of a non-ferromagnetic conductive structure in a strong magnetic field, a code of finite element method (FEM) was developed based on the reduced vector potential (Ar) method and a step by step time integration algorithm. The electromagneto-mechanical coupling effect was taken into consideration by adding ν × B term in the eddy current governing equation to calculate the additional electric field induced by the movement of the structure. The hexahedral isoparametric element was adopted in this code in order to simplify the correspondence between the simulation of electromagnetic force and the dynamical response, which enables the application of the code developed by authors to more complicated structures. To verify the validity of the new numerical code, the benchmark problem (TEAM-16) as a simplified model of Tokamak vacuum vessel structure was simulated. By numerical results contrasted between the current code and the ANSYS software, the code was proved to be more effective than typical commercial codes for structural analysis of a magneto-mechanical coupling problem. The simulation results proved that the new code can improve simulation accuracy especially in case of a large external magnetic field. In addition, the magnetic damping effect was also discussed in the paper.


Sign in / Sign up

Export Citation Format

Share Document