scholarly journals COPAR: A ChIP-Seq Optimal Peak Analyzer

2017 ◽  
Vol 2017 ◽  
pp. 1-4
Author(s):  
Binhua Tang ◽  
Xihan Wang ◽  
Victor X. Jin

Sequencing data quality and peak alignment efficiency of ChIP-sequencing profiles are directly related to the reliability and reproducibility of NGS experiments. Till now, there is no tool specifically designed for optimal peak alignment estimation and quality-related genomic feature extraction for ChIP-sequencing profiles. We developed open-sourced COPAR, a user-friendly package, to statistically investigate, quantify, and visualize the optimal peak alignment and inherent genomic features using ChIP-seq data from NGS experiments. It provides a versatile perspective for biologists to perform quality-check for high-throughput experiments and optimize their experiment design. The package COPAR can process mapped ChIP-seq read file in BED format and output statistically sound results for multiple high-throughput experiments. Together with three public ChIP-seq data sets verified with the developed package, we have deposited COPAR on GitHub under a GNU GPL license.

MycoKeys ◽  
2018 ◽  
Vol 39 ◽  
pp. 29-40 ◽  
Author(s):  
Sten Anslan ◽  
R. Henrik Nilsson ◽  
Christian Wurzbacher ◽  
Petr Baldrian ◽  
Leho Tedersoo ◽  
...  

Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast accumulation of HTS data, there has been a growing need and interest for developing tools for HTS data processing and communication. In particular, a number of bioinformatics tools have been designed for analysing metabarcoding data, each with specific features, assumptions and outputs. To evaluate the potential effect of the application of different bioinformatics workflow on the results, we compared the performance of different analysis platforms on two contrasting high-throughput sequencing data sets. Our analysis revealed that the computation time, quality of error filtering and hence output of specific bioinformatics process largely depends on the platform used. Our results show that none of the bioinformatics workflows appears to perfectly filter out the accumulated errors and generate Operational Taxonomic Units, although PipeCraft, LotuS and PIPITS perform better than QIIME2 and Galaxy for the tested fungal amplicon dataset. We conclude that the output of each platform requires manual validation of the OTUs by examining the taxonomy assignment values.


2011 ◽  
Vol 77 (24) ◽  
pp. 8795-8798 ◽  
Author(s):  
Daniel Aguirre de Cárcer ◽  
Stuart E. Denman ◽  
Chris McSweeney ◽  
Mark Morrison

ABSTRACTSeveral subsampling-based normalization strategies were applied to different high-throughput sequencing data sets originating from human and murine gut environments. Their effects on the data sets' characteristics and normalization efficiencies, as measured by several β-diversity metrics, were compared. For both data sets, subsampling to the median rather than the minimum number appeared to improve the analysis.


2014 ◽  
Vol 13s1 ◽  
pp. CIN.S13890 ◽  
Author(s):  
Changjin Hong ◽  
Solaiappan Manimaran ◽  
William Evan Johnson

Quality control and read preprocessing are critical steps in the analysis of data sets generated from high-throughput genomic screens. In the most extreme cases, improper preprocessing can negatively affect downstream analyses and may lead to incorrect biological conclusions. Here, we present PathoQC, a streamlined toolkit that seamlessly combines the benefits of several popular quality control software approaches for preprocessing next-generation sequencing data. PathoQC provides a variety of quality control options appropriate for most high-throughput sequencing applications. PathoQC is primarily developed as a module in the PathoScope software suite for metagenomic analysis. However, PathoQC is also available as an open-source Python module that can run as a stand-alone application or can be easily integrated into any bioinformatics workflow. PathoQC achieves high performance by supporting parallel computation and is an effective tool that removes technical sequencing artifacts and facilitates robust downstream analysis. The PathoQC software package is available at http://sourceforge.net/projects/PathoScope/ .


2020 ◽  
Author(s):  
Zeyu Jiao ◽  
Yinglei Lai ◽  
Jujiao Kang ◽  
Weikang Gong ◽  
Liang Ma ◽  
...  

AbstractHigh-throughput technologies, such as magnetic resonance imaging (MRI) and DNA/RNA sequencing (DNA-seq/RNA-seq), have been increasingly used in large-scale association studies. With these technologies, important biomedical research findings have been generated. The reproducibility of these findings, especially from structural MRI (sMRI) and functional MRI (fMRI) association studies, has recently been questioned. There is an urgent demand for a reliable overall reproducibility assessment for large-scale high-throughput association studies. It is also desirable to understand the relationship between study reproducibility and sample size in an experimental design. In this study, we developed a novel approach: the mixture model reproducibility index (M2RI) for assessing study reproducibility of large-scale association studies. With M2RI, we performed study reproducibility analysis for several recent large sMRI/fMRI data sets. The advantages of our approach were clearly demonstrated, and the sample size requirements for different phenotypes were also clearly demonstrated, especially when compared to the Dice coefficient (DC). We applied M2RI to compare two MRI or RNA sequencing data sets. The reproducibility assessment results were consistent with our expectations. In summary, M2RI is a novel and useful approach for assessing study reproducibility, calculating sample sizes and evaluating the similarity between two closely related studies.


2018 ◽  
Author(s):  
Hyun-Hwan Jeong ◽  
Seon Young Kim ◽  
Maxime W.C. Rousseaux ◽  
Huda Y. Zoghbi ◽  
Zhandong Liu

AbstractThe simplicity and cost-effectiveness of CRISPR technology have made high-throughput pooled screening approaches available to many. However, the large amount of sequencing data derived from these studies yields often unwieldy datasets requiring considerable bioinformatic resources to deconvolute data; a feature which is simply not accessible to many wet labs. To address these needs, we have developed a cloud-based webtool CRISPRCloud2 that provides a state-of-the-art accuracy in mapping short reads to CRISPR library, a powerful statistical test that aggregates information across multiple sgRNAs targeting the same gene, a user-friendly data visualization and query interface, as well as easy linking to other CRISPR tools and bioinformatics resources for target prioritization. CRISPRCloud2 is a one-stop shop for labs analyzing CRISPR screen data.


2019 ◽  
Author(s):  
Camille Marchet ◽  
Mael Kerbiriou ◽  
Antoine Limasset

AbstractMotivationA plethora of methods and applications share the fundamental need to associate information to words for high throughput sequence analysis. Indexing billions of k-mers is promptly a scalability problem, as exact associative indexes can be memory expensive. Recent works take advantage of the properties of the k-mer sets to leverage this challenge. They exploit the overlaps shared among k-mers by using a de Bruijn graph as a compact k-mer set to provide lightweight structures.ResultsWe present Blight, a static and exact index structure able to associate unique identifiers to indexed k-mers and to reject alien k-mers that scales to the largest kmer sets with a low memory cost. The proposed index combines an extremely compact representation along with very high throughput. Besides, its construction from the de Bruijn graph sequences is efficient and does not need supplementary memory. The efficient index implementation achieves to index the k-mers from the human genome with 8GB within 10 minutes and can scale up to the large axolotl genome with 63 GB within 76 minutes. Furthermore, while being memory efficient, the index allows above a million queries per second on a single CPU in our experiments, and the use of multiple cores raises its throughput. Finally, we also present how the index can practically represent metagenomic and transcriptomic sequencing data to highlight its wide applicative range.AvailabilityThe index is implemented as a C++ library, is open source under AGPL3 license, and available at github.com/Malfoy/Blight. It is designed as a user-friendly library and comes along with samples code usage.


2016 ◽  
Vol 62 (8) ◽  
pp. 692-703 ◽  
Author(s):  
Gregory B. Gloor ◽  
Gregor Reid

A workshop held at the 2015 annual meeting of the Canadian Society of Microbiologists highlighted compositional data analysis methods and the importance of exploratory data analysis for the analysis of microbiome data sets generated by high-throughput DNA sequencing. A summary of the content of that workshop, a review of new methods of analysis, and information on the importance of careful analyses are presented herein. The workshop focussed on explaining the rationale behind the use of compositional data analysis, and a demonstration of these methods for the examination of 2 microbiome data sets. A clear understanding of bioinformatics methodologies and the type of data being analyzed is essential, given the growing number of studies uncovering the critical role of the microbiome in health and disease and the need to understand alterations to its composition and function following intervention with fecal transplant, probiotics, diet, and pharmaceutical agents.


Sign in / Sign up

Export Citation Format

Share Document