scholarly journals The Combined Effect of the Initial Cure and the Type of Cement on the Natural Carbonation, the Portlandite Content, and Nonevaporable Water in Blended Cement

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Saida Boualleg ◽  
Mohamed Bencheikh ◽  
Larbi Belagraa ◽  
Aziz Daoudi ◽  
Mohamed Aziz Chikouche

The aim of this work is to better understand the physical and chemical phenomena involved in hydrated mix (clinker + addition) during the natural carbonation process, to characterize cement with supplementary cementitious materials (SCMs) under various curing environment. The prepared cement pastes were characterized by thermogravimetric analysis. The results showed a considerable influence of the environment on the properties of mortars and cement and a perfect correlation between compressive strength, natural carbonation, nonevaporable water, and portlandite content. It was observed that the reduction of the curing period makes the mortars more sensitive. The kinetics of process was evaluated from Ca(OH)2 content and nonevaporable water contained in mortars. These two parameters reflect the hydration progress of the water/cement ratio studied. The weight loss due to Ca(OH)2 decomposition, calculated by DTA/TG analysis, shows the effect of the pozzolanic reaction and the natural carbonation. The supplementary cementitious materials (SCMs) play a considerable role in the slowing down of the aggression environment.

Clay Minerals ◽  
2015 ◽  
Vol 50 (1) ◽  
pp. 133-152 ◽  
Author(s):  
M.H. Cornejo ◽  
J. Elsen ◽  
C. Paredes ◽  
H. Baykara

AbstractThis contribution is the second part of an in-depth study on the hydration and strength evolution of blended cement pastes at a water to binder (W/B) ratio of 0.3, cured by two different methods. The blended cement pastes showed significant hydration up to 7 days, when almost all of the hydration products had already formed; thereafter, carbonation played an important role up to, and possibly beyond, 91 days. Likewise, the hydration of alite (tricalcium silicate, Ca3SiO5, C3S) proceeded up to 14 days and then started to slow down. However, the hydration of belite (dicalcium silicate, Ca2SiO4, C2S) was affected most strongly, as it nearly ceased, under the air-curing conditions. During hydration, some of the blended cement pastes had a larger calcium hydroxide (CH) content than the unblended (plain) ones. The accelerating effects of the addition of supplementary cementitious materials (SCMs), the air-curing conditions and the low W/B ratio may explain these unusual results. Under these experimental conditions, the water incorporated into hydrates was about 50% of the total amount of water used during full hydration of the cement pastes. The pozzolanic reaction predominated during the early ages, but disappeared as time passed. In contrast, the carbonation reaction increased by consuming ∼45% of the total amount of CH produced after aging for 91 days. Only one blended cement paste reached the compressive strength of the plain cements. The blended cement pastes containing 5% of the zeolitic tuffs, Zeo1 or Zeo2, or 10% of the calcareous siltstone, Limo, developed the greatest compressive strength under the experimental conditions used in this study.


2019 ◽  
Vol 955 ◽  
pp. 44-49 ◽  
Author(s):  
Janette Dragomirová ◽  
Martin Palou

The manufacture of optimized heavyweight concrete takes into consideration the type of aggregates, composition of blended cement, water-to-cement ratio, additives etc. The density of concrete depends mainly on the specific gravity of the used aggregates. Generally, concretes with specific gravities higher that 2600 kg m-3 are called heavyweight concretes and aggregates with specific gravity higher than 3000 kg m-3 are considered as heavyweight aggregates according to EN [1,2]. Concrete is a low cost material and easy to produce in varied compositions when compared to other shielding materials based on ceramics [3]. It is composed of a well-proportioned mixture of light and heavy nuclei. It is therefore efficient both in absorbing gamma rays and in slowing down fast neutrons by elastic and inelastic scattering [2]. Light materials, especially hydrogenous materials which contained in the water of hydration of the set cement (concrete) attenuate fast neutrons as a consequence of the high cross-section of hydrogen [4].


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 475
Author(s):  
Ana María Moreno de los Reyes ◽  
José Antonio Suárez-Navarro ◽  
Maria del Mar Alonso ◽  
Catalina Gascó ◽  
Isabel Sobrados ◽  
...  

Supplementary cementitious materials (SCMs) in industrial waste and by-products are routinely used to mitigate the adverse environmental effects of, and lower the energy consumption associated with, ordinary Portland cement (OPC) manufacture. Many such SCMs, such as type F coal fly ash (FA), are naturally occurring radioactive materials (NORMs). 226Ra, 232Th and 40K radionuclide activity concentration, information needed to determine what is known as the gamma-ray activity concentration index (ACI), is normally collected from ground cement samples. The present study aims to validate a new method for calculating the ACI from measurements made on unground 5 cm cubic specimens. Mechanical, mineralogical and radiological characterisation of 28-day OPC + FA pastes (bearing up to 30 wt % FA) were characterised to determine their mechanical, mineralogical and radiological properties. The activity concentrations found for 226Ra, 212Pb, 232Th and 40K in hardened, intact 5 cm cubic specimens were also statistically equal to the theoretically calculated values and to the same materials when ground to a powder. These findings consequently validated the new method. The possibility of determining the activity concentrations needed to establish the ACI for cement-based materials on unground samples introduces a new field of radiological research on actual cement, mortar and concrete materials.


2019 ◽  
Vol 198 ◽  
pp. 445-455 ◽  
Author(s):  
Daniel da Silva Andrade ◽  
João Henrique da Silva Rêgo ◽  
Paulo Cesar Morais ◽  
Anne Neiry de Mendonça Lopes ◽  
Moisés Frías Rojas

2021 ◽  
Vol 6 ◽  
pp. 61-69
Author(s):  
Sivakumar Ramanathan ◽  
Priyadarshini Perumal ◽  
Mirja Illikainen ◽  
Prannoy Suraneni

Two mine tailings are evaluated for their potential as supplementary cementitious materials. The mine tailings were milled using two different methods – ball milling for 30 minutes and disc milling for durations ranging from 1 to 15 minutes. The modified R3 test was carried out on the mine tailings to quantify their reactivity. The reactivity of the disc milled tailings is greater than those of the ball milled tailings. Strong correlations are obtained between milling duration, median particle size, amorphous content, dissolved aluminum and silicon, and reactivity of the mine tailings. The milling energy results in an increase in the fineness and the amorphous content, which do not appreciably increase beyond a disc milling duration of 8 minutes. The reactivity increases significantly beyond a certain threshold fineness and amorphous content. Cementitious pastes were prepared at 30% supplementary cementitious materials replacement level at a water-to-cementitious materials ratio of 0.40. No negative effects of the mine tailings were observed at early ages in cement pastes based on isothermal calorimetry and thermogravimetric analysis, demonstrating the potential for these materials to be used as supplementary cementitious materials.


Author(s):  
Karima Arroudj ◽  
Saida Dorbani ◽  
Mohamed Nadjib Oudjit ◽  
Arezki Tagnit-Hamou

Much of the current research on concrete engineering has been focused on including siliceous additions as supplementary cementitious materials (SCMs). Silica reacts with Calcium hydroxide release during cement hydration, and produces more C-S-H. The latter contributes to increase compactness, mechanical strengths and sustainability of concrete. This paper explores the hydration characteristics of cement paste based on various natural mineral additions, that are very abundant in Algeria and present a high silica content (ground natural pozzolana “PZ” and ground dune sand “DS”). For this purpose, several analyses were carried out on modified cement pastes and mortars. TheseSCMswere introduced by replacement levels of 15, 20 and 25 by weight of cement. We first, studied the effect of these SCMs on the heat of hydration and mechanical strength of mortars at different ages. The evolution of hydration of modified paste was studied, by using Thermal analysis (TG/TDA) at different ages, to analyze the Calcium Hydroxide (CH) content of the modified pastes. It is shown that the CH content of the mixes including SCMs is lower than that of the plain cement paste, indicating that silica reacts with the cement paste through a pozzolanic reaction. Increased pozzolanic activity results in higher amounts of Calcium Silicate Hydrate in the paste, which in turn results in higher compressive strength for modified cement mortars. Due to its crystalline morphology, the ground DS particles present a partial pozzolanic effect, compared to PZ which is semi-crystalline. Modified mortars by 20% DS can be the optimal composition. It presents satisfactory results: good mechanical strength and low heat of hydration. It can lead to an economic and sustainable concrete. Ground DS is very abounded in Africa and free of any impurities and can be a good alternativeSCMsin cement industry.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 446
Author(s):  
L Krishnaraj ◽  
P T. Ravichandran ◽  
M V.A.Karthik ◽  
N Satheeshram Avudaiyappan ◽  
. .

The life of the concrete is strongly influenced by durability parameters. The permeability is one of the main characteristics influencing the durability of concrete. The concrete is more permeable due to the ingress of water, oxygen, chloride, sulphate, and other potential deleterious substances. The durability of concrete is mainly affected by pore structure system of concrete and addingthe supplementary cementitious materials (SCM), such as fly ash, slag cement, and silica fume can be decrease permeability. Crystalline technology enhances the strength of concrete by filling the poresand micro-cracks with non-dissolvable substances. To study the efficiency of crystalline formation in concrete in terms of more permeable should be guaranteed through a specific technique.The effectiveness of crystalline waterproofing system with partial replacement cement by GGBS is studiedin terms of strength and durability. The performance of the two different types of crystalline waterproofing integral admixtures has been studied for compressive strength, Split tensile strength, workability, water permeability, Rapid chloride permeability test and porosity in this paper.The early strength increased in GGBS with crystalline admixture concretes compare to the control concrete. No significant strength reduction is observed in GGBS concretes with crystalline admixture when replaced with 20% and 40% of cement than control concrete.  


Author(s):  
Olusola Emmanuel Babalola ◽  
Paul O. Awoyera

Supplementary cementitious materials are most needed to enhance a sustainable development in poor communities. It is pertinent to investigate the suitability of such alternative materials for construction. The present study evaluates the strength characteristics of concrete made with varied proportion of Cordia millenii ash blended with Portland cement. Chemical composition of Cordia millenii and the setting time when blended with cement was determined. Other laboratory tests performed on Cordia millenii blended cement include: sieve analysis and specific gravity. Five replacement percentages of Cordia millenii (5%, 10%, 15%, and 20%) were blended with cement in concrete. Control specimens were also produced with only cement. Tests to determine the workability, air entrained, bulk density and compressive strength properties of the concrete were also conducted. Results obtained revealed that optimum Cordia millenii mix is 10%, which yielded the highest density and compressive strength in the concrete.


Sign in / Sign up

Export Citation Format

Share Document