scholarly journals (Anti)chiral Superfield Approach to Nilpotent Symmetries: Self-Dual Chiral Bosonic Theory

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
N. Srinivas ◽  
T. Bhanja ◽  
R. P. Malik

We exploit the beauty and strength of the symmetry invariant restrictions on the (anti)chiral superfields to derive the Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST, and (anti-)co-BRST symmetry transformations in the case of a two (1+1)-dimensional (2D) self-dual chiral bosonic field theory within the framework of augmented (anti)chiral superfield formalism. Our 2D ordinary theory is generalized onto a (2,2)-dimensional supermanifold which is parameterized by the superspace variable ZM=xμ,θ,θ¯, where xμ (with μ=0,1) are the ordinary 2D bosonic coordinates and (θ,θ¯) are a pair of Grassmannian variables with their standard relationships: θ2=θ¯2=0, θθ¯+θ¯θ=0. We impose the (anti-)BRST and (anti-)co-BRST invariant restrictions on the (anti)chiral superfields (defined on the (anti)chiral (2,1)-dimensional supersubmanifolds of the above general (2,2)-dimensional supermanifold) to derive the above nilpotent symmetries. We do not exploit the mathematical strength of the (dual-)horizontality conditions anywhere in our present investigation. We also discuss the properties of nilpotency, absolute anticommutativity, and (anti-)BRST and (anti-)co-BRST symmetry invariance of the Lagrangian density within the framework of our augmented (anti)chiral superfield formalism. Our observation of the absolute anticommutativity property is a completely novel result in view of the fact that we have considered only the (anti)chiral superfields in our present endeavor.

2018 ◽  
Vol 33 (04) ◽  
pp. 1850026 ◽  
Author(s):  
B. Chauhan ◽  
S. Kumar ◽  
R. P. Malik

We derive the off-shell nilpotent (fermionic) (anti-)BRST symmetry transformations by exploiting the (anti-)chiral superfield approach (ACSA) to Becchi–Rouet–Stora–Tyutin (BRST) formalism for the interacting Abelian 1-form gauge theories where there is a coupling between the U(1) Abelian 1-form gauge field and Dirac as well as complex scalar fields. We exploit the (anti-)BRST invariant restrictions on the (anti-)chiral superfields to derive the fermionic symmetries of our present D-dimensional Abelian 1-form gauge theories. The novel observation of our present investigation is the derivation of the absolute anticommutativity of the nilpotent (anti-)BRST charges despite the fact that our ordinary D-dimensional theories are generalized onto the (D,[Formula: see text]1)-dimensional (anti-) chiral super-submanifolds (of the general (D,[Formula: see text]2)-dimensional supermanifold) where only the (anti-)chiral super expansions of the (anti-)chiral superfields have been taken into account. We also discuss the nilpotency of the (anti-)BRST charges and (anti-)BRST invariance of the Lagrangian densities of our present theories within the framework of ACSA to BRST formalism.


2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
A. Shukla ◽  
S. Krishna ◽  
R. P. Malik

We derive the complete set of off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST, and (anti-)co-BRST symmetry transformations forallthe fields of the modified version of two(1+1)-dimensional (2D) Proca theory by exploiting the “augmented” superfield formalism where the (dual-)horizontality conditions and (dual-)gauge invariant restrictions are exploitedtogether. We capture the (anti-)BRST and (anti-)co-BRST invariance of the Lagrangian density in the language of superfield approach. We also express the nilpotency and absolute anticommutativity of the (anti-)BRST and (anti-)co-BRST charges within the framework of augmented superfield formalism. This exercise leads to somenovelobservations which have, hitherto, not been pointed out in the literature within the framework of superfield approach to BRST formalism. For the sake of completeness, we also mention, very briefly, a unique bosonic symmetry, the ghost-scale symmetry, and discrete symmetries of the theory and show that the algebra of conserved charges provides a physical realization of the Hodge algebra (satisfied by the de Rham cohomological operators of differential geometry).


2019 ◽  
Vol 34 (24) ◽  
pp. 1950131 ◽  
Author(s):  
B. Chauhan ◽  
S. Kumar ◽  
R. P. Malik

We exploit the power and potential of the (anti-)chiral superfield approach (ACSA) to Becchi–Rouet–Stora–Tyutin (BRST) formalism to derive the nilpotent (anti-)BRST symmetry transformations for any arbitrary [Formula: see text]-dimensional interacting non-Abelian 1-form gauge theory where there is an [Formula: see text] gauge invariant coupling between the gauge field and the Dirac fields. We derive the conserved and nilpotent (anti-)BRST charges and establish their nilpotency and absolute anticommutativity properties within the framework of ACSA to BRST formalism. The clinching proof of the absolute anticommutativity property of the conserved and nilpotent (anti-)BRST charges is a novel result in view of the fact that we consider, in our endeavor, only the (anti-)chiral super expansions of the superfields that are defined on the [Formula: see text]-dimensional super-submanifolds of the general [Formula: see text]-dimensional supermanifold on which our [Formula: see text]-dimensional ordinary interacting non-Abelian 1-form gauge theory is generalized. To corroborate the novelty of the above result, we apply the ACSA to an [Formula: see text] supersymmetric (SUSY) quantum mechanical (QM) model of a harmonic oscillator and show that the nilpotent and conserved [Formula: see text] supercharges of this system do not absolutely anticommute.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
A. Tripathi ◽  
B. Chauhan ◽  
A. K. Rao ◽  
R. P. Malik

We carry out the Becchi-Rouet-Stora-Tyutin (BRST) quantization of the one 0 + 1 -dimensional (1D) model of a free massive spinning relativistic particle (i.e., a supersymmetric system) by exploiting its classical infinitesimal and continuous reparameterization symmetry transformations. We use the modified Bonora-Tonin (BT) supervariable approach (MBTSA) to BRST formalism to obtain the nilpotent (anti-)BRST symmetry transformations of the target space variables and the (anti-)BRST invariant Curci-Ferrari- (CF-) type restriction for the 1D model of our supersymmetric (SUSY) system. The nilpotent (anti-)BRST symmetry transformations for other variables of our model are derived by using the (anti-)chiral supervariable approach (ACSA) to BRST formalism. Within the framework of the latter, we have shown the existence of the CF-type restriction by proving the (i) symmetry invariance of the coupled Lagrangians and (ii) the absolute anticommutativity property of the conserved (anti-)BRST charges. The application of the MBTSA to a physical SUSY system (i.e., a 1D model of a massive spinning particle) is a novel result in our present endeavor. In the application of ACSA, we have considered only the (anti-)chiral super expansions of the supervariables. Hence, the observation of the absolute anticommutativity of the (anti-)BRST charges is a novel result. The CF-type restriction is universal in nature as it turns out to be the same for the SUSY and non-SUSY reparameterization (i.e., 1D diffeomorphism) invariant models of the (non-)relativistic particles.


2009 ◽  
Vol 24 (32) ◽  
pp. 6157-6176 ◽  
Author(s):  
R. P. MALIK ◽  
B. P. MANDAL ◽  
S. K. RAI

The celebrated Curci–Ferrari (CF) type of restrictions are invoked to obtain the off-shell nilpotent and absolutely anticommuting (anti-)BRST as well as (anti-)co-BRST symmetry transformations in the context of the Lagrangian description of the physical four (3+1)-dimensional (4D) free Abelian 2-form gauge theory. We show that the above CF-type conditions, which turn out to be the secondary constraints of the theory, remain invariant with respect to the time-evolution of the above 2-form gauge system in the Hamiltonian formulation. This time-evolution invariance (i) physically ensures the linear independence of the BRST versus anti-BRST as well as co-BRST versus anti-co-BRST symmetry transformations, and (ii) provides a logical reason behind the imposition of the above CF-type restrictions in the proof of the absolute anticommutativity of the off-shell nilpotent (anti-)BRST as well as (anti-)co-BRST symmetry transformations.


2016 ◽  
Vol 2016 ◽  
pp. 1-17
Author(s):  
T. Bhanja ◽  
N. Srinivas ◽  
R. P. Malik

We exploit the key concepts of the augmented version of superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism to derive the superspace (SUSP)dualunitary operator and its Hermitian conjugate and demonstrate their utility in the derivation of the nilpotent and absolutely anticommuting (anti-)dual-BRST symmetry transformations for a set of interesting models of theAbelian1-form gauge theories. These models are the one (0+1)-dimensional (1D) rigid rotor and modified versions of the two (1+1)-dimensional (2D) Proca as well as anomalous gauge theories and 2D model of a self-dual bosonic field theory. We show theuniversalityof the SUSPdualunitary operator and its Hermitian conjugate in the cases ofallthe Abelian models under consideration. These SUSP dual unitary operators, besides maintaining the explicit group structure, provide the alternatives to the dual horizontality condition (DHC) and dual gauge invariant restrictions (DGIRs) of the superfield formalism. The derivations of thedualunitary operators and corresponding (anti-)dual-BRST symmetries are completelynovelresults in our present investigation.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Eric Lescano ◽  
Martín Mayo

Abstract L∞ algebras describe the underlying algebraic structure of many consistent classical field theories. In this work we analyze the algebraic structure of Gauged Double Field Theory in the generalized flux formalism. The symmetry transformations consist of a generalized deformed Lie derivative and double Lorentz transformations. We obtain all the non-trivial products in a closed form considering a generalized Kerr-Schild ansatz for the generalized frame and we include a linear perturbation for the generalized dilaton. The off-shell structure can be cast in an L3 algebra and when one considers dynamics the former is exactly promoted to an L4 algebra. The present computations show the fully algebraic structure of the fundamental charged heterotic string and the $$ {L}_3^{\mathrm{gauge}} $$ L 3 gauge structure of (Bosonic) Enhanced Double Field Theory.


2014 ◽  
Vol 92 (9) ◽  
pp. 1033-1042 ◽  
Author(s):  
S. Gupta ◽  
R. Kumar ◽  
R.P. Malik

In the available literature, only the Becchi–Rouet–Stora–Tyutin (BRST) symmetries are known for the Jackiw–Pi model of the three (2 + 1)-dimensional (3D) massive non-Abelian gauge theory. We derive the off-shell nilpotent [Formula: see text] and absolutely anticommuting (sbsab + sabsb = 0) (anti-)BRST transformations s(a)b corresponding to the usual Yang–Mills gauge transformations of this model by exploiting the “augmented” superfield formalism where the horizontality condition and gauge invariant restrictions blend together in a meaningful manner. There is a non-Yang–Mills (NYM) symmetry in this theory, too. However, we do not touch the NYM symmetry in our present endeavor. This superfield formalism leads to the derivation of an (anti-)BRST invariant Curci–Ferrari restriction, which plays a key role in the proof of absolute anticommutativity of s(a)b. The derivation of the proper anti-BRST symmetry transformations is important from the point of view of geometrical objects called gerbes. A novel feature of our present investigation is the derivation of the (anti-)BRST transformations for the auxiliary field ρ from our superfield formalism, which is neither generated by the (anti-)BRST charges nor obtained from the requirements of nilpotency and (or) absolute anticommutativity of the (anti-)BRST symmetries for our present 3D non-Abelian 1-form gauge theory.


1993 ◽  
Vol 08 (28) ◽  
pp. 5005-5021
Author(s):  
R.L. DAVIS

The very low temperature dynamics of an isotropic superfluid is derived from a repulsive bosonic field theory. The field theory is a fully dynamical generalization of the Ginzburg-Landau theory, which at zero temperature has semiclassical superfluid solutions. It is shown that supercurrent quenching occurs above some intrinsic critical velocity. The speed of first sound is calculated and the Landau criterion for a maximum superfluid velocity is derived. At finite temperature, the thermodynamic potential is computed, the order parameter and gap equations are derived, the origin of the Landau two-fluid model is identified and the thermomechanical effect is explained. This theory successfully describes many of the features of 4He well below the critical temperature, as well as relativistic generalizations.


Author(s):  
Steffen Schmidt ◽  
S. P. Klevansky

This paper explains the systematics of the generation of families of spectra for the -symmetric quantum-mechanical Hamiltonians H = p 2 + x 2 (i x ) ϵ , H = p 2 +( x 2 ) δ and H = p 2 −( x 2 ) μ . In addition, it contrasts the results obtained with those found for a bosonic scalar field theory, in particular in one dimension, highlighting the similarities to and differences from the quantum-mechanical case. It is shown that the number of families of spectra can be deduced from the number of non-contiguous pairs of Stokes wedges that display symmetry. To do so, simple arguments that use the Wentzel–Kramers–Brillouin approximation are used, and these imply that the eigenvalues are real. However, definitive results are in most cases presently only obtainable numerically, and not all eigenvalues in each family may be real. Within the approximations used, it is illustrated that the difference between the quantum-mechanical and the field-theoretical cases lies in the number of accessible regions in which the eigenfunctions decay exponentially. This paper reviews and implements well-known techniques in complex analysis and -symmetric quantum theory.


Sign in / Sign up

Export Citation Format

Share Document