scholarly journals pVAXhsp65 Vaccination Primes for High IL-10 Production and Decreases Experimental Encephalomyelitis Severity

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Sofia Fernanda Gonçalves Zorzella-Pezavento ◽  
Fernanda Chiuso-Minicucci ◽  
Thais Graziela Donegá França ◽  
Larissa Lumi Watanabe Ishikawa ◽  
Larissa Camargo da Rosa ◽  
...  

Experimental autoimmune encephalomyelitis (EAE) is a demyelinating pathology of the central nervous system (CNS) used as a model to study multiple sclerosis immunopathology. EAE has also been extensively employed to evaluate potentially therapeutic schemes. Considering the presence of an immune response directed to heat shock proteins (hsps) in autoimmune diseases and the immunoregulatory potential of these molecules, we evaluated the effect of a previous immunization with a genetic vaccine containing the mycobacterial hsp65 gene on EAE development. C57BL/6 mice were immunized with 4 pVAXhsp65 doses and 14 days later were submitted to EAE induction by immunization with myelin oligodendrocyte glycoprotein (MOG35–55) emulsified in Complete Freund’s Adjuvant. Vaccinated mice presented significant lower clinical scores and lost less body weight.MOG35–55immunization also determined less inflammation in lumbar spinal cord but did not change CD4+CD25+Foxp3+ T cells frequency in spleen and CNS. Infiltrating cells from the CNS stimulated with rhsp65 produced significantly higher levels of IL-10. These results suggest that the ability of pVAXhsp65 vaccination to control EAE development is associated with IL-10 induction.

1997 ◽  
Vol 3 (6) ◽  
pp. 377-381 ◽  
Author(s):  
D. Rodriguez ◽  
B. Della Gaspera ◽  
B. Zalc ◽  
J-J. Hauw ◽  
B. Fontaine ◽  
...  

Myelin/oligodendrocyte glycoprotein (MOG) is a major target antigen in experimental autoimmune encephalomyelitis and it has been suggested that it may as well play a key role in the demyelination process in multiple sclerosis (MS). As MOG variants could be pathogenic in autoimmune demyelinating diseases of the central nervous system, we analysed the coding sequence of MOG in MS patients and described a G→A transition occurring in exon 3 of the human MOG gene. The mutation predicts that isoleucine substitutes for a valine at codon I 45 (Val 145 lle) in the transmembrane region of the protein. This is the first aminoacid substitution reported in human MOG. The polymorphism can be detected by restriction enzyme digestion of genomic DNA or reverse-transcribed PCR amplified products, making it a simple tool to detect a potential implication of MOG alleles in susceptibility to MS by association study. The analysis of 83 unrelated MS patients and 82 unrelated healthy controls showed that the polymorphism is found in similar proportions in MS patients (18%) and controls (14.6%). It is therefore unlikely that the MOG Val 145 lle variant is responsible for genetic susceptibility to MS.


2012 ◽  
Vol 19 (6) ◽  
pp. 721-731 ◽  
Author(s):  
Nabeela Nathoo ◽  
Smriti Agrawal ◽  
Ying Wu ◽  
Sarah Haylock-Jacobs ◽  
V Wee Yong ◽  
...  

Background: Susceptibility-weighted imaging (SWI) is an iron-sensitive magnetic resonance imaging (MRI) method that has shown iron-related lesions in multiple sclerosis (MS) patients. The contribution of deoxyhemoglobin to the signals seen in SWI has not been well characterized in MS. Objectives: To determine if SWI lesions (seen as focal hypointensities) exist in the experimental autoimmune encephalomyelitis (EAE) animal model of MS, and to determine whether the lesions relate to iron deposits, inflammation, demyelination, and/or deoxyhemoglobin in the vasculature. Methods: We performed SWI on the lumbar spinal cord and cerebellum of EAE and control mice (both complete Freund’s adjuvant/pertussis toxin (CFA/PTX)-immunized and naive). We also performed SWI on mice before and after perfusion (to remove blood from vessels). SWI lesions were counted and their locations were compared to histology for iron, myelin and inflammation. Results: SWI lesions were found to exist in the EAE model. Many lesions seen by SWI were not present after perfusion, especially at the grey/white matter boundary of the lumbar spinal cord and in the cerebellum, indicating that these lesion signals were associated with deoxyhemoglobin present in the lumen of vessels. We also observed SWI lesions in the white matter of the lumbar spinal cord that corresponded to iron deposition, inflammation and demyelination. In the cerebellum, SWI lesions were present in white matter tracts, where we found histological evidence of inflammatory perivascular cuffs. Conclusions: SWI lesions exist in EAE mice. Many lesions seen in SWI were a result of deoxyhemoglobin in the blood, and so may indicate areas of hypoxia. A smaller number of SWI lesions coincided with parenchymal iron, demyelination, and/or inflammation.


2021 ◽  
Author(s):  
Reza Nasrnezhad ◽  
Sohrab Halalkhor ◽  
Farzin Sadeghi ◽  
Fereshteh Pourabdolhossein

Abstract Inflammation, demyelination, glial activation, and oxidative damage are the most pathological hallmarks of multiple sclerosis (MS). Piperine, a main bioactive alkaloid of black pepper, possesses antioxidant, anti-inflammatory and neuroprotective properties whose therapeutic potential has been less studied in the experimental autoimmune encephalomyelitis (EAE) models. In this study, the efficiency of peprine on progression of EAE model and myelin repair mechanisms was investigated. EAE was induced in female Lewis rats and piperine and its vehicle were daily administrated intraperitoneally from day 8 to 29 post immunization. We found that peperine alleviated neurological deficits and EAE disease progression. Luxol fast blue and H&E staining and immuno-staining of lumbar spinal cord cross sections confirmed that piperine significantly reduced the extent of demyelination, inflammation and immune cell infiltration and inhibited microglia and astrocyte activation. Gene expression analysis in lumbar spinal cord showed that piperine treatment decreased the level of pro-inflammatory cytokines (TNF-α, IL-1β) and iNOS and enhanced IL-10, Nrf-2, HO-1and MBP expressions. Piperine supplementation also enhanced the total antioxidant capacity (FRAP) and reduced the level of oxidative stress marker (MDA) in the CNS of EAE rats. Finally, we found that piperine has anti-apoptotic and neuroprotective effect in EAE through reducing caspase-3 (apoptosis marker) and enhancing BDNF and NeuN expressing cells. This study strongly indicates that piperine has a beneficial effect on the EAE progression and could be considered as a potential therapeutic target for MS treatment. Upcoming clinical trials will provide the deep understanding of piperine’s role for the treatment of the MS.


2021 ◽  
Author(s):  
Laura Calvo-Barreiro ◽  
Herena Eixarch ◽  
Thais Cornejo ◽  
Carme Costa ◽  
Mireia Castillo ◽  
...  

SummaryGut microbiome studies in multiple sclerosis (MS) patients are unravelling some consistent but modest patterns of gut dysbiosis. Among these, a significant decrease of Clostridia cluster IV and XIVa has been reported. In the present study, we investigated the therapeutic effect of a previously selected mixture of human gut-derived 17 Clostridia strains, which belong to Clostridia clusters IV, XIVa, and XVIII, on the clinical outcome of experimental autoimmune encephalomyelitis (EAE). The observed clinical improvement was related to lower demyelination and astrocyte reactivity as well as a tendency to lower microglia reactivity/infiltrating macrophages and axonal damage in the central nervous system (CNS), and to an enhanced immunoregulatory response of regulatory T cells in the periphery. Transcriptome studies also highlighted increased antiinflammatory responses related to interferon beta in the periphery and lower immune responses in the CNS. Since Clostridia-treated mice were found to present higher levels of the immunomodulatory short-chain fatty acid (SCFA) butyrate in the serum, we studied if this clinical effect could be reproduced by butyrate administration alone. Further EAE experiments proved its preventive but slight therapeutic impact on CNS autoimmunity. Thus, this smaller therapeutic effect highlighted that the Clostridia-induced clinical effect was not exclusively related to the SCFA and could not be reproduced by butyrate administration alone. Although it is still unknown if these Clostridia strains will have the same effect on MS patients, gut dysbiosis in MS patients could be partially rebalanced by these commensal bacteria and their immunoregulatory properties could have a beneficial effect on MS clinical course.


2021 ◽  
Author(s):  
William E. Barclay ◽  
M. Elizabeth Deerhake ◽  
Makoto Inoue ◽  
Toshiaki Nonaka ◽  
Kengo Nozaki ◽  
...  

ABSTRACTInflammasomes are a class of innate immune signaling platforms that activate in response to an array of cellular damage and pathogens. Inflammasomes promote inflammation under many circumstances to enhance immunity against pathogens and inflammatory responses through their effector cytokines, IL-1β and IL-18. Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are such autoimmune conditions influenced by inflammasomes. Despite work investigating inflammasomes during EAE, little remains known concerning the role of inflammasomes in the central nervous system (CNS) during the disease. Here we use multiple genetically modified mouse models to monitor activated inflammasomes in situ based on ASC oligomerization in the spinal cord. Using inflammasome reporter mice, we found heightened inflammasome activation in astrocytes after the disease peak. In contrast, microglia and CNS-infiltrated myeloid cells had few activated inflammasomes in the CNS during EAE. Astrocyte inflammasome activation was dependent on AIM2, but low IL-1β expression and no significant signs of cell death were found in astrocytes during EAE. Thus, the AIM2 inflammasome activation in astrocytes may have a distinct role from traditional inflammasome-mediated inflammation.SIGNIFICANCE STATEMENTInflammasome activation in the peripheral immune system is pathogenic in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). However, inflammasome activity in the central nervous system (CNS) is largely unexplored. Here, we used genetically modified mice to determine inflammasome activation in the CNS during EAE. Our data indicated heightened AIM2 inflammasome activation in astrocytes after the disease peak. Unexpectedly, neither CNS-infiltrated myeloid cells nor microglia were the primary cells with activated inflammasomes in SC during EAE. Despite AIM2 inflammasome activation, astrocytes did not undergo apparent cell death and produced little of the proinflammatory cytokine, IL-1β, during EAE. This study showed that CNS inflammasome activation occurs during EAE without associating with IL-1β-mediated inflammation.


Sign in / Sign up

Export Citation Format

Share Document