scholarly journals Intercomparing the Response of Tropospheric and Stratospheric Temperature to Two Types of El Niño Onset

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shujie Chang ◽  
Min Shao ◽  
Chunhua Shi ◽  
Hua Xu

Based on Remote Sensing Systems-retrieved temperature data in the period of January 1979 to February 2016, the response of stratospheric and tropospheric temperature in boreal winter to two previously defined types of El Niño [spring (SP) and summer (SU)] is investigated. The results show that, the response of temperature under SP onset involves a significant positive anomaly, with a symmetric distribution about the equator over the Indian Ocean region in the lower troposphere (850 hPa) and a negative anomaly in the lower stratosphere (50 hPa). Meanwhile, in the area 30°N and 30°S of the equator, most parts of the lower stratosphere feature a positive anomaly. This indicates that SP El Niño events are more conducive than SU events to warming the lower stratosphere. The atmospheric circulation structure over the tropical Indian Ocean is beneficial to the upward transfer of warm air to the upper layer. In contrast, the structure over the tropical Pacific Ocean favors the warming of upper air. On the other hand, the Eliassen–Palm (EP) flux is small and the heat flux is negative during SP-type events. Thus, the EP flux and Brewer–Dobson circulation decrease, making the temperature higher in the upper troposphere-lower stratosphere region at low latitudes.

2018 ◽  
Vol 32 (1) ◽  
pp. 213-230 ◽  
Author(s):  
Chao He ◽  
Tianjun Zhou ◽  
Tim Li

Abstract The western North Pacific subtropical anticyclone (WNPAC) is the most prominent atmospheric circulation anomaly over the subtropical Northern Hemisphere during the decaying summer of an El Niño event. Based on a comparison between the RCP8.5 and the historical experiments of 30 coupled models from the CMIP5, we show evidence that the anomalous WNPAC during the El Niño–decaying summer is weaker in a warmer climate although the amplitude of the El Niño remains generally unchanged. The weakened impact of the sea surface temperature anomaly (SSTA) over the tropical Indian Ocean (TIO) on the atmosphere is essential for the weakened anomalous WNPAC. In a warmer climate, the warm tropospheric temperature (TT) anomaly in the tropical free troposphere stimulated by the El Niño–related SSTA is enhanced through stronger moist adiabatic adjustment in a warmer mean state, even if the SSTA of El Niño is unchanged. But the amplitude of the warm SSTA over TIO remains generally unchanged in an El Niño–decaying summer, the static stability of the boundary layer over TIO is increased, and the positive rainfall anomaly over TIO is weakened. As a result, the warm Kelvin wave emanating from TIO is weakened because of a weaker latent heating anomaly over TIO, which is responsible for the weakened WNPAC anomaly. Numerical experiments support the weakened sensitivity of precipitation anomaly over TIO to local SSTA under an increase of mean-state SST and its essential role in the weakened anomalous WNPAC, independent of any change in the SSTA.


2012 ◽  
Vol 25 (3) ◽  
pp. 921-938 ◽  
Author(s):  
Bo Wu ◽  
Tianjun Zhou ◽  
Tim Li

Abstract The observational analysis reveals two distinct precipitation modes, the zonal dipole (DP) mode and the monopole (MP) mode, in the tropical Indian Ocean (TIO) during the El Niño mature winter, even though sea surface temperature anomalies (SSTAs) have a similar basinwide warming pattern [referred to as the Indian Ocean basin mode (IOBM)]. The formation of the two precipitation modes depends on the distinct evolutions of the SSTA in the tropical Pacific and Indian Ocean. Both of the precipitation modes are preceded by an Indian Ocean dipole (IOD). The IOD associated with the DP mode developed in late summer and was triggered by Pacific El Niño through a “Sumatra–Philippine pattern.” The IOD associated with the MP mode developed in early summer when the Pacific SSTAs were still normal. The different IOD onset time leads to salient differences in subsequent evolution including the transfer of a dipole SST pattern to a basinwide pattern. As a result, in the boreal winter, the zonal SSTA gradient associated with the DP mode is much stronger than that associated with the MP mode. The strong SSTA zonal gradient associated with the DP mode drives an anomalous Walker circulation in the TIO, while the nearly uniform warm SSTA associated with the MP mode forces a basin-scale upward motion. The two modes have opposite impacts on the zonal wind over the equatorial western Pacific, with anomalous westerly (easterly) occurring during the DP (MP) mode, and thus they may have distinct impacts on El Niño evolution.


2005 ◽  
Vol 18 (17) ◽  
pp. 3428-3449 ◽  
Author(s):  
Albert S. Fischer ◽  
Pascal Terray ◽  
Eric Guilyardi ◽  
Silvio Gualdi ◽  
Pascale Delecluse

Abstract The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Niño–Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Niño, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Niño state. The presence of these two triggers—the first independent of ENSO and the second phase locking the IOZM to El Niño—allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Niño.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1605
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza

Contrasting effects of the tropical Indian and Pacific Oceans on the atmospheric circulation and rainfall interannual variations over South America during southern winter are assessed considering the effects of the warm Indian Ocean basin-wide (IOBW) and El Niño (EN) events, and of the cold IOBW and La Niña events, which are represented by sea surface temperature-based indices. Analyses are undertaken using total and partial correlations. When the effects of the two warm events are isolated from each other, the contrasts between the associated rainfall anomalies in most of South America become accentuated. In particular, EN relates to anomalous wet conditions, and the warm IOBW event to opposite conditions in extensive areas of the 5° S–25° S band. These effects in the 5° S–15° S sector are due to the anomalous regional Hadley cells, with rising motions in this band for the EN and sinking motions for the warm IOBW event. Meanwhile, in subtropical South America, the opposite effects of the EN and warm IOBW seem to be due to the presence of anomalous anticyclone and cyclone and associated moisture transport, respectively. These opposite effects of the warm IOBW and EN events on the rainfall in part of central South America might explain the weak rainfall relation in this region to the El Niño–Southern Oscillation (ENSO). Our results emphasize the important role of the tropical Indian Ocean in the South American climate and environment during southern winter.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1437
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza ◽  
...  

This paper examines the effects of the tropical Pacific Ocean (TPO) and Indian Ocean Dipole (IOD) modes in the interannual variations of austral spring rainfall over South America (SA). The TPO mode refers to the El Niño-Southern Oscillation (ENSO). The isolated effects between IOD and TPO were estimated, events were chosen from the residual TPO (R-TPO) or residual IOD (R-IOD), and the IOD (TPO) effects for the R-TPO (R-IOD) composites were removed from the variables. One relevant result was the nonlinear precipitation response to R-TPO and R-IOD. This feature was accentuated for the R-IOD composites. The positive R-IOD composite showed significant negative precipitation anomalies along equatorial SA east of 55° W and in subtropical western SA, and showed positive anomalies in northwestern SA and central Brazil. The negative R-IOD composite indicated significant positive precipitation anomalies in northwestern Amazon, central–eastern Brazil north of 20° S, and western subtropical SA, and negative anomalies were found in western SA south of 30° S. This nonlinearity was likely due to the distinct atmospheric circulation responses to the anomalous heating sources located in longitudinally distinct regions: the western tropical Indian Ocean and areas neighboring Indonesia. The results obtained in this study might be relevant for climate monitoring and modeling studies.


2015 ◽  
Vol 28 (20) ◽  
pp. 7962-7984 ◽  
Author(s):  
Jieshun Zhu ◽  
Bohua Huang ◽  
Arun Kumar ◽  
James L. Kinter III

Abstract Seasonality of sea surface temperature (SST) predictions in the tropical Indian Ocean (TIO) was investigated using hindcasts (1982–2009) made with the NCEP Climate Forecast System version 2 (CFSv2). CFSv2 produced useful predictions of the TIO SST with lead times up to several months. A substantial component of this skill was attributable to signals other than the Indian Ocean dipole (IOD). The prediction skill of the IOD index, defined as the difference between the SST anomaly (SSTA) averaged over 10°S–0°, 90°–110°E and 10°S–10°N, 50°–70°E, had strong seasonality, with high scores in the boreal autumn. In spite of skill in predicting its two poles with longer leads, CFSv2 did not have skill significantly better than persistence in predicting IOD. This was partly because the seasonal nature of IOD intrinsically limits its predictability. The seasonality of the predictable patterns of the TIO SST was further explored by applying the maximum signal-to-noise (MSN) empirical orthogonal function (EOF) method to the predicted SSTA in March and October, respectively. The most predictable pattern in spring was the TIO basin warming, which is closely associated with El Niño. The basin mode, including its associated atmospheric anomalies, can be predicted at least 9 months ahead, even though some biases were evident. On the other hand, the most predictable pattern in fall was characterized by the IOD mode. This mode and its associated atmospheric variations can be skillfully predicted only 1–2 seasons ahead. Statistically, the predictable IOD mode coexists with El Niño; however, the 1994 event in a non-ENSO year (at least not a canonical ENSO year) can also be predicted at least 3 months ahead by CFSv2.


2007 ◽  
Vol 20 (13) ◽  
pp. 3164-3189 ◽  
Author(s):  
H. Annamalai ◽  
H. Okajima ◽  
M. Watanabe

Abstract Two atmospheric general circulation models (AGCMs), differing in numerics and physical parameterizations, are employed to test the hypothesis that El Niño–induced sea surface temperature (SST) anomalies in the tropical Indian Ocean impact considerably the Northern Hemisphere extratropical circulation anomalies during boreal winter [January–March +1 (JFM +1)] of El Niño years. The hypothesis grew out of recent findings that ocean dynamics influence SST variations over the southwest Indian Ocean (SWIO), and these in turn impact local precipitation. A set of ensemble simulations with the AGCMs was carried out to assess the combined and individual effects of tropical Pacific and Indian Ocean SST anomalies on the extratropical circulation. To elucidate the dynamics responsible for the teleconnection, solutions were sought from a linear version of one of the AGCMs. Both AGCMs demonstrate that the observed precipitation anomalies over the SWIO are determined by local SST anomalies. Analysis of the circulation response shows that over the Pacific–North American (PNA) region, the 500-hPa height anomalies, forced by Indian Ocean SST anomalies, oppose and destructively interfere with those forced by tropical Pacific SST anomalies. The model results validated with reanalysis data show that compared to the runs where only the tropical Pacific SST anomalies are specified, the root-mean-square error of the height anomalies over the PNA region is significantly reduced in runs in which the SST anomalies in the Indian Ocean are prescribed in addition to those in the tropical Pacific. Among the ensemble members, both precipitation anomalies over the SWIO and the 500-hPa height over the PNA region show high potential predictability. The solutions from the linear model indicate that the Rossby wave packets involved in setting up the teleconnection between the SWIO and the PNA region have a propagation path that is quite different from the classical El Niño–PNA linkage. The results of idealized experiments indicate that the Northern Hemisphere extratropical response to Indian Ocean SST anomalies is significant and the effect of this response needs to be considered in understanding the PNA pattern during El Niño years. The results presented herein suggest that the tropical Indian Ocean plays an active role in climate variability and that accurate observation of SST there is of urgent need.


2014 ◽  
Vol 119 (8) ◽  
pp. 5105-5122 ◽  
Author(s):  
Soumi Chakravorty ◽  
C. Gnanaseelan ◽  
J. S. Chowdary ◽  
Jing-Jia Luo

2020 ◽  
Vol 50 (8) ◽  
pp. 2359-2372
Author(s):  
Gengxin Chen ◽  
Dongxiao Wang ◽  
Weiqing Han ◽  
Ming Feng ◽  
Fan Wang ◽  
...  

AbstractIn the eastern tropical Indian Ocean, intraseasonal variability (ISV) affects the regional oceanography and marine ecosystems. Mooring and satellite observations documented two periods of unusually weak ISV during the past two decades, associated with suppressed baroclinic instability of the South Equatorial Current. Regression analysis and model simulations suggest that the exceptionally weak ISVs were caused primarily by the extreme El Niño events and modulated to a lesser extent by the Indian Ocean dipole. Additional observations confirm that the circulation balance in the Indo-Pacific Ocean was disrupted during the extreme El Niño events, impacting the Indonesian Throughflow Indian Ocean dynamics. This research provides substantial evidence for large-scale modes modulating ISV and the abnormal Indo-Pacific dynamical connection during extreme climate modes.


2017 ◽  
Vol 50 (11-12) ◽  
pp. 4707-4719 ◽  
Author(s):  
Zesheng Chen ◽  
Yan Du ◽  
Zhiping Wen ◽  
Renguang Wu ◽  
Chunzai Wang

Sign in / Sign up

Export Citation Format

Share Document