scholarly journals Two Distinct Modes of Tropical Indian Ocean Precipitation in Boreal Winter and Their Impacts on Equatorial Western Pacific*

2012 ◽  
Vol 25 (3) ◽  
pp. 921-938 ◽  
Author(s):  
Bo Wu ◽  
Tianjun Zhou ◽  
Tim Li

Abstract The observational analysis reveals two distinct precipitation modes, the zonal dipole (DP) mode and the monopole (MP) mode, in the tropical Indian Ocean (TIO) during the El Niño mature winter, even though sea surface temperature anomalies (SSTAs) have a similar basinwide warming pattern [referred to as the Indian Ocean basin mode (IOBM)]. The formation of the two precipitation modes depends on the distinct evolutions of the SSTA in the tropical Pacific and Indian Ocean. Both of the precipitation modes are preceded by an Indian Ocean dipole (IOD). The IOD associated with the DP mode developed in late summer and was triggered by Pacific El Niño through a “Sumatra–Philippine pattern.” The IOD associated with the MP mode developed in early summer when the Pacific SSTAs were still normal. The different IOD onset time leads to salient differences in subsequent evolution including the transfer of a dipole SST pattern to a basinwide pattern. As a result, in the boreal winter, the zonal SSTA gradient associated with the DP mode is much stronger than that associated with the MP mode. The strong SSTA zonal gradient associated with the DP mode drives an anomalous Walker circulation in the TIO, while the nearly uniform warm SSTA associated with the MP mode forces a basin-scale upward motion. The two modes have opposite impacts on the zonal wind over the equatorial western Pacific, with anomalous westerly (easterly) occurring during the DP (MP) mode, and thus they may have distinct impacts on El Niño evolution.

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1605
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza

Contrasting effects of the tropical Indian and Pacific Oceans on the atmospheric circulation and rainfall interannual variations over South America during southern winter are assessed considering the effects of the warm Indian Ocean basin-wide (IOBW) and El Niño (EN) events, and of the cold IOBW and La Niña events, which are represented by sea surface temperature-based indices. Analyses are undertaken using total and partial correlations. When the effects of the two warm events are isolated from each other, the contrasts between the associated rainfall anomalies in most of South America become accentuated. In particular, EN relates to anomalous wet conditions, and the warm IOBW event to opposite conditions in extensive areas of the 5° S–25° S band. These effects in the 5° S–15° S sector are due to the anomalous regional Hadley cells, with rising motions in this band for the EN and sinking motions for the warm IOBW event. Meanwhile, in subtropical South America, the opposite effects of the EN and warm IOBW seem to be due to the presence of anomalous anticyclone and cyclone and associated moisture transport, respectively. These opposite effects of the warm IOBW and EN events on the rainfall in part of central South America might explain the weak rainfall relation in this region to the El Niño–Southern Oscillation (ENSO). Our results emphasize the important role of the tropical Indian Ocean in the South American climate and environment during southern winter.


2013 ◽  
Vol 26 (18) ◽  
pp. 7240-7266 ◽  
Author(s):  
Yan Du ◽  
Shang-Ping Xie ◽  
Ya-Li Yang ◽  
Xiao-Tong Zheng ◽  
Lin Liu ◽  
...  

Abstract This study evaluates the simulation of the Indian Ocean Basin (IOB) mode and relevant physical processes in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Historical runs from 20 CMIP5 models are available for the analysis. They reproduce the IOB mode and its close relationship to El Niño–Southern Oscillation (ENSO). Half of the models capture key IOB processes: a downwelling oceanic Rossby wave in the southern tropical Indian Ocean (TIO) precedes the IOB development in boreal fall and triggers an antisymmetric wind anomaly pattern across the equator in the following spring. The anomalous wind pattern induces a second warming in the north Indian Ocean (NIO) through summer and sustains anticyclonic wind anomalies in the northwest Pacific by radiating a warm tropospheric Kelvin wave. The second warming in the NIO is indicative of ocean–atmosphere interaction in the interior TIO. More than half of the models display a double peak in NIO warming, as observed following El Niño, while the rest show only one winter peak. The intermodel diversity in the characteristics of the IOB mode seems related to the thermocline adjustment in the south TIO to ENSO-induced wind variations. Almost all the models show multidecadal variations in IOB variance, possibly modulated by ENSO.


2011 ◽  
Vol 24 (23) ◽  
pp. 6146-6164 ◽  
Author(s):  
Xiao-Tong Zheng ◽  
Shang-Ping Xie ◽  
Qinyu Liu

Abstract The development of the Indian Ocean basin (IOB) mode and its change under global warming are investigated using a pair of integrations with the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (CM2.1). In the simulation under constant climate forcing, the El Niño–induced warming over the tropical Indian Ocean (TIO) and its capacitor effect on summer northwest Pacific climate are reproduced realistically. In the simulation forced by increased greenhouse gas concentrations, the IOB mode and its summer capacitor effect are enhanced in persistence following El Niño, even though the ENSO itself weakens in response to global warming. In the prior spring, an antisymmetric pattern of rainfall–wind anomalies and the meridional SST gradient across the equator strengthen via increased wind–evaporation–sea surface temperature (WES) feedback. ENSO decays slightly faster in global warming. During the summer following El Niño decay, the resultant decrease in equatorial Pacific SST strengthens the SST contrast with the enhanced TIO warming, increasing the sea level pressure gradient and intensifying the anomalous anticyclone over the northwest Pacific. The easterly wind anomalies associated with the northwest Pacific anticyclone in turn sustain the SST warming over the north Indian Ocean and South China Sea. Thus, the increased TIO capacitor effect is due to enhanced air–sea interaction over the TIO and with the western Pacific. The implications for the observed intensification of the IOB mode and its capacitor effect after the 1970s are discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shujie Chang ◽  
Min Shao ◽  
Chunhua Shi ◽  
Hua Xu

Based on Remote Sensing Systems-retrieved temperature data in the period of January 1979 to February 2016, the response of stratospheric and tropospheric temperature in boreal winter to two previously defined types of El Niño [spring (SP) and summer (SU)] is investigated. The results show that, the response of temperature under SP onset involves a significant positive anomaly, with a symmetric distribution about the equator over the Indian Ocean region in the lower troposphere (850 hPa) and a negative anomaly in the lower stratosphere (50 hPa). Meanwhile, in the area 30°N and 30°S of the equator, most parts of the lower stratosphere feature a positive anomaly. This indicates that SP El Niño events are more conducive than SU events to warming the lower stratosphere. The atmospheric circulation structure over the tropical Indian Ocean is beneficial to the upward transfer of warm air to the upper layer. In contrast, the structure over the tropical Pacific Ocean favors the warming of upper air. On the other hand, the Eliassen–Palm (EP) flux is small and the heat flux is negative during SP-type events. Thus, the EP flux and Brewer–Dobson circulation decrease, making the temperature higher in the upper troposphere-lower stratosphere region at low latitudes.


2010 ◽  
Vol 23 (14) ◽  
pp. 3933-3952 ◽  
Author(s):  
H. Annamalai ◽  
Shinichiro Kida ◽  
Jan Hafner

Abstract Diagnostics performed with twentieth-century (1861–2000) ensemble integrations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (CM2.1) suggest that, during the developing phase, El Niño events that co-occur with the Indian Ocean Dipole Zonal Mode (IODZM; class 1) are stronger than those without (class 2). Also, during class 1 events coherent sea surface temperature (SST) anomalies develop in the Indonesian seas that closely follow the life cycle of IODZM. This study investigates the effect of these regional SST anomalies (equatorial Indian Ocean and Indonesian seas) on the amplitude of the developing El Niño. An examination of class 1 minus class 2 composites suggests two conditions that could lead to a strong El Niño in class 1 events: (i) during January, ocean–atmosphere conditions internal to the equatorial Pacific are favorable for the development of a stronger El Niño and (ii) during May–June, coinciding with the development of regional SST anomalies, an abrupt increase in westerly wind anomalies is noticeable over the equatorial western Pacific with a subsequent increase in thermocline and SST anomalies over the eastern equatorial Pacific. This paper posits the hypothesis that, under favorable conditions in the equatorial Pacific, regional SST anomalies may enable the development of a stronger El Niño. Owing to a wealth of feedbacks in CM2.1, solutions from a linear atmosphere model forced with May–June anomalous precipitation and anomalous SST from selected areas over the equatorial Indo-Pacific are examined. Consistent with our earlier study, the net Kelvin wave response to contrasting tropical Indian Ocean heating anomalies cancels over the equatorial western Pacific. In contrast, Indonesian seas SST anomalies account for about 60%–80% of the westerly wind anomalies over the equatorial western Pacific and also induce anomalous precipitation over the equatorial central Pacific. It is argued that the feedback between the precipitation and circulation anomalies results in an abrupt increase in zonal wind anomalies over the equatorial western Pacific. Encouraged by these results, the authors further examined the processes that cause cold SST anomalies over the Indonesian seas using an ocean model. Sensitivity experiments suggest that local wind anomalies, through stronger surface heat loss and evaporation, and subsurface upwelling are the primary causes. The present results imply that in coupled models, a proper representation of regional air–sea interactions over the equatorial Indo-Pacific warm pool may be important to understand and predict the amplitude of El Niño.


2019 ◽  
Vol 32 (7) ◽  
pp. 2057-2073 ◽  
Author(s):  
Yu Huang ◽  
Bo Wu ◽  
Tim Li ◽  
Tianjun Zhou ◽  
Bo Liu

The interdecadal variability of basinwide sea surface temperature anomalies (SSTAs) in the tropical Indian Ocean (TIO), referred to as the interdecadal Indian Ocean basin mode (ID-IOBM), is caused by remote forcing of the interdecadal Pacific oscillation (IPO), as demonstrated by the observational datasets and tropical Pacific pacemaker experiments of the Community Earth System Model (CESM). It is noted that the growth of the ID-IOBM shows a season-dependent characteristic, with a maximum tendency of mixed layer heat anomalies occurring in early boreal winter. Three factors contribute to this maximum tendency. In response to the positive IPO forcing, the eastern TIO is covered by the descending branch of the anomalous Walker circulation. Thus, the convection over the southeastern TIO is suppressed, which increases local downward shortwave radiative fluxes. Meanwhile, the equatorial easterly anomalies to the west of the suppressed convection weaken the background mean westerly and thus decrease the upward latent heat fluxes over the equatorial Indian Ocean. Third, anomalous westward Ekman currents driven by the equatorial easterly anomalies advect climatological warm water westward and thus warm the western TIO. In summer, the TIO is out of the control of the positive IPO remote forcing. The ID-IOBM gradually decays due to the Newtonian damping effect.


2005 ◽  
Vol 18 (17) ◽  
pp. 3428-3449 ◽  
Author(s):  
Albert S. Fischer ◽  
Pascal Terray ◽  
Eric Guilyardi ◽  
Silvio Gualdi ◽  
Pascale Delecluse

Abstract The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Niño–Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Niño, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Niño state. The presence of these two triggers—the first independent of ENSO and the second phase locking the IOZM to El Niño—allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Niño.


2018 ◽  
Vol 31 (24) ◽  
pp. 10123-10139 ◽  
Author(s):  
Chuan-Yang Wang ◽  
Shang-Ping Xie ◽  
Yu Kosaka

El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean–atmosphere coupling.


2018 ◽  
Vol 32 (1) ◽  
pp. 213-230 ◽  
Author(s):  
Chao He ◽  
Tianjun Zhou ◽  
Tim Li

Abstract The western North Pacific subtropical anticyclone (WNPAC) is the most prominent atmospheric circulation anomaly over the subtropical Northern Hemisphere during the decaying summer of an El Niño event. Based on a comparison between the RCP8.5 and the historical experiments of 30 coupled models from the CMIP5, we show evidence that the anomalous WNPAC during the El Niño–decaying summer is weaker in a warmer climate although the amplitude of the El Niño remains generally unchanged. The weakened impact of the sea surface temperature anomaly (SSTA) over the tropical Indian Ocean (TIO) on the atmosphere is essential for the weakened anomalous WNPAC. In a warmer climate, the warm tropospheric temperature (TT) anomaly in the tropical free troposphere stimulated by the El Niño–related SSTA is enhanced through stronger moist adiabatic adjustment in a warmer mean state, even if the SSTA of El Niño is unchanged. But the amplitude of the warm SSTA over TIO remains generally unchanged in an El Niño–decaying summer, the static stability of the boundary layer over TIO is increased, and the positive rainfall anomaly over TIO is weakened. As a result, the warm Kelvin wave emanating from TIO is weakened because of a weaker latent heating anomaly over TIO, which is responsible for the weakened WNPAC anomaly. Numerical experiments support the weakened sensitivity of precipitation anomaly over TIO to local SSTA under an increase of mean-state SST and its essential role in the weakened anomalous WNPAC, independent of any change in the SSTA.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1437
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza ◽  
...  

This paper examines the effects of the tropical Pacific Ocean (TPO) and Indian Ocean Dipole (IOD) modes in the interannual variations of austral spring rainfall over South America (SA). The TPO mode refers to the El Niño-Southern Oscillation (ENSO). The isolated effects between IOD and TPO were estimated, events were chosen from the residual TPO (R-TPO) or residual IOD (R-IOD), and the IOD (TPO) effects for the R-TPO (R-IOD) composites were removed from the variables. One relevant result was the nonlinear precipitation response to R-TPO and R-IOD. This feature was accentuated for the R-IOD composites. The positive R-IOD composite showed significant negative precipitation anomalies along equatorial SA east of 55° W and in subtropical western SA, and showed positive anomalies in northwestern SA and central Brazil. The negative R-IOD composite indicated significant positive precipitation anomalies in northwestern Amazon, central–eastern Brazil north of 20° S, and western subtropical SA, and negative anomalies were found in western SA south of 30° S. This nonlinearity was likely due to the distinct atmospheric circulation responses to the anomalous heating sources located in longitudinally distinct regions: the western tropical Indian Ocean and areas neighboring Indonesia. The results obtained in this study might be relevant for climate monitoring and modeling studies.


Sign in / Sign up

Export Citation Format

Share Document