scholarly journals Polydatin Prevents Methylglyoxal-Induced Apoptosis through Reducing Oxidative Stress and Improving Mitochondrial Function in Human Umbilical Vein Endothelial Cells

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ningbo Pang ◽  
Tangting Chen ◽  
Xin Deng ◽  
Ni Chen ◽  
Rong Li ◽  
...  

Methylglyoxal (MGO), an active metabolite of glucose, has been reported to induce vascular cell apoptosis in diabetic complication. Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions, such as antioxidative, anti-inflammatory, and nephroprotective properties. However, the protective effects of PD on MGO-induced apoptosis in endothelial cells remain to be elucidated. In this study, human umbilical vein endothelial cells (HUVECs) were used to explore the effects of PD on MGO-induced cell apoptosis and the possible mechanism involved. HUVECs were pretreated with PD for 2 h, followed by stimulation with MGO. Then cell apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) impairment, mitochondrial morphology alterations, and Akt phosphorylation were assessed. The results demonstrated that PD significantly prevented MGO-induced HUVEC apoptosis. PD pretreatment also significantly inhibited MGO-induced ROS production, MMP impairment, mitochondrial morphology changes, and Akt dephosphorylation. These results and the experiments involving N-acetyl cysteine (antioxidant), Cyclosporin A (mitochondrial protector), and LY294002 (Akt inhibitor) suggest that PD prevents MGO-induced HUVEC apoptosis, at least in part, through inhibiting oxidative stress, maintaining mitochondrial function, and activating Akt pathway. All of these data indicate the potential application of PD for the treatment of diabetic vascular complication.

2015 ◽  
Vol 6 (5) ◽  
pp. 1568-1577 ◽  
Author(s):  
Moon ho Do ◽  
Su nam Kim ◽  
Seung-Yong Seo ◽  
Eui-Ju Yeo ◽  
Sun Yeou Kim

δ-Tocopherol protects HUVECs against apoptotic activity induced by methylglyoxal.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3279
Author(s):  
Na Zhu ◽  
Xinran Liu ◽  
Meihong Xu ◽  
Yong Li

Several lines of evidence suggest an inhibitory role of dietary nucleotides (NTs) against oxidative stress and inflammation, which promote senescence in age-associated cardiovascular diseases. We sought to test whether the dietary NTs could retard the hydrogen peroxide (H2O2)-induced senescence of human umbilical vein endothelial cells (HUVECs) and to elucidate the efficiency of different NTs as well as the potential mechanism. Senescence was induced in HUVECs by 4 h exposure to 200 µM H2O2 and was confirmed using senescence-associated-β-galactosidase staining (SA-β-gal), cell viability, and Western blot analyses of p16INK4A and p21Waf1/Cip1 after 24 h administration of growth medium. We find that NTs retards oxidative stress-induced HUVECs senescence, as shown by a lower percentage of SA-β-gal-positive cells, lower expression of p16INK4A, and p21Waf1/Cip1 as well as higher cell viability. GMP100 was the most excellent in delaying HUVECs senescence, which was followed by the NTs mixture, NMN, CMP50, and UMP50/100, while AMP retards HUVECs senescence by specifically reducing p15INK4b expression. NTs all have significant anti-inflammatory effects; AMP and CMP were more prominent in restoring mitochondrial function, GMP and CMP were more competent at eliminating ROS and MDA, while AMP and UMP were more efficient at enhancing antioxidant enzyme activity. The role of the NTs mixture in retarding HUVECs senescence is full-scaled. These results stated that the mechanisms of NTs retarding HUVECs senescence could be related to its antioxidant and anti-inflammation properties promoting cell proliferation and protecting mitochondrial function activities.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 609
Author(s):  
Indyaswan Tegar Suryaningtyas ◽  
Chang-Bum Ahn ◽  
Jae-Young Je

Cardiovascular disease represents a leading cause of mortality and is often characterized by the emergence of endothelial dysfunction (ED), a physiologic condition that takes place in the early progress of atherosclerosis. In this study, two cytoprotective peptides derived from blue mussel chymotrypsin hydrolysates with the sequence of EPTF and FTVN were purified and identified. Molecular mechanisms underlying the cytoprotective effects against oxidative stress which lead to human umbilical vein endothelial cells (HUVEC) injury were investigated. The results showed that pretreatment of EPTF, FTVN and their combination (1:1) in 0.1 mg/mL significantly reduced HUVEC death due to H2O2 exposure. The cytoprotective mechanism of these peptides involves an improvement in the cellular antioxidant defense system, as indicated by the suppression of the intracellular ROS generation through upregulation of the cytoprotective enzyme heme oxygenase-1. In addition, H2O2 exposure triggers HUVEC damage through the apoptosis process, as evidenced by increased cytochrome C release, Bax protein expression, and the elevated amount of activated caspase-3, however in HUVEC pretreated with peptides and their combination, the presence of those apoptotic stimuli was significantly decreased. Each peptide showed similar cytoprotective effect but no synergistic effect. Taken together, these peptides may be especially important in protecting against oxidative stress-mediated ED.


2016 ◽  
Vol 39 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Zhi-ying Zhong ◽  
Yu Tang

Background/Aims: High glucose-induced oxidative damage to endothelial cells plays a central role in the pathogenesis of diabetic vascular complications. This study was undertaken to explore the role of periostin in high glucose-induced endothelial cell apoptosis and associated molecular mechanisms. Methods: Human umbilical vein endothelial cells (HUVECs) were exposed to high glucose (33.3 mmol/L) and examined for the expression of periostin. The effects of periostin upregulation on high glucose-induced apoptosis, mitochondrial dysfunction, and reactive oxygen species (ROS) production were determined. The activation of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) by periostin was checked. HO-1 knockdown experiments were done to confirm its role in the action of periostin in high glucose-exposed HUVECs. Results: High glucose significantly upregulated the expression of periostin in HUVECs. Enforced expression of periostin attenuated high glucose-induced apoptosis in HUVECs, as determined by TUNEL staining and caspase-3 activity assay. Periostin overexpression prevented loss of Δψm, release of mitochondrial cytochrome c, and dysregulation of Bcl-2 and Bax in high glucose-exposed HUVECs. Periostin upregulation suppressed high glucose-induced ROS generation and activated the Nrf2/HO-1 signaling. HO-1 silencing restored high glucose-induced ROS generation and apoptotic response in periostin-overexpressing HUVECs. Conclusion: Periostin mitigates high glucose-induced mitochondrial apoptosis in endothelial cells, via activation of Nrf2/HO-1 signaling and reduction of ROS formation. Further studies are warranted to explore the therapeutic potential of periostin in diabetic vascular complications.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 86
Author(s):  
Yunok Oh ◽  
Chang-Bum Ahn ◽  
Jae-Young Je

Oxidative stress-induced endothelial dysfunction is strongly linked to the pathogenesis of cardiovascular diseases. A previous study revealed that seahorse hydrolysates ameliorated oxidative stress-mediated human umbilical vein endothelial cells (HUVECs) injury. However, the responsible compounds have not yet been identified. This study aimed to identify cytoprotective peptides and to investigate the molecular mechanism underlying the cytoprotective role in H2O2-induced HUVECs injury. After purification by gel filtration and HPLC, two peptides were sequenced by liquid chromatography-tandem mass spectrometry as HGSH (436.43 Da) and KGPSW (573.65 Da). The synthesized peptides and their combination (1:1 ratio) showed significant HUVECs protection effect at 100 μg/mL against H2O2-induced oxidative damage via significantly reducing intracellular reactive oxygen species (ROS). Two peptides and their combination treatment resulted in the increased heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, through the activation of nuclear transcription factor-erythroid 2-related factor (Nrf2). Additionally, cell cycle and nuclear staining analysis revealed that two peptides and their combination significantly protected H2O2-induced cell death through antiapoptotic action. Two peptides and their combination treatment led to inhibit the expression of proapoptotic Bax, the release of cytochrome C into the cytosol, the activation of caspase 3 by H2O2 treatment in HUVECs, whereas antiapoptotic Bcl-2 expression was increased with concomitant downregulation of Bax/Bcl-2 ratio. Taken together, these results suggest that seahorse-derived peptides may be a promising agent for oxidative stress-related cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document