scholarly journals Stability and Convergence Analysis of Direct Adaptive Inverse Control

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Shafiq ◽  
Muhammad A. Shafiq ◽  
Hassan A. Yousef

In adaptive inverse control (AIC), adaptive inverse of the plant is used as a feed-forward controller. Majority of AIC schemes estimate controller parameters using the indirect method. Direct adaptive inverse control (DAIC) alleviates the adhocism in adaptive loop. In this paper, we discuss the stability and convergence of DAIC algorithm. The computer simulation results are presented to demonstrate the performance of the DAIC. Laboratory scale experimental results are included in the paper to study the efficiency of DAIC for physical plants.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Minh-Canh Huynh ◽  
Cheng-Yuan Chang

Noise in a dynamic system is practically unavoidable. Today, such noise is commonly reduced using an active noise control (ANC) system with the filtered-x least mean square (FXLMS) algorithm. However, the performance of the ANC system with FXLMS algorithm is significantly impaired in nonlinear systems. Therefore, this paper develops an efficient nonlinear adaptive feedback neural controller (NAFNC) to eliminate narrowband noise for both linear and nonlinear ANC systems. The proposed controller is implemented to update its coefficients without prior offline training by neural network. Hence, the proposed method has rapid convergence rate as confirmed by simulation results. The proposed work also analyzes the stability and convergence of the proposed algorithm. Simulation results verify the effectiveness of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jinbo Lu ◽  
Xiaorong Hou ◽  
Min Luo

A general parametric controller design method is proposed for Hopf bifurcation of nonlinear dynamic system. This method does not increase the dimension of the system. Compared with the existing methods, the controller designed by this method has a lower controller order and a simpler structure, and it does not contain equilibrium points. The method keeps equilibrium of the origin system unchanged. Symbolic computation is used to deduce the constraints of controller, and cylindrical algebraic decomposition is used to find the stability parameter regions in parameter space of controller. The method is then employed for Hopf bifurcation control. Taking Lorenz system as an example, the controller design steps of the method and numerical simulations are discussed. Computer simulation results are presented to confirm the analytical predictions.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 253
Author(s):  
Md. Ghulam Murtaza ◽  
Efstratios Emmanouil Tzirtzilakis ◽  
Mohammad Ferdows

This investigated the time-dependent, two-dimensional biomagnetic fluid (blood) flow (BFD) over a stretching sheet under the action of a strong magnetic field. Blood is considered a homogeneous and Newtonian fluid, which behaves as an electrically conducting magnetic fluid that also exhibits magnetization. Thus, a full BFD formulation was considered by combining both the principles of magnetization and the Lorentz force, which arise in magnetohydrodynamics and ferrohydrodynamics. The non-linear governing equations were transformed by using the usual non-dimensional variables. The resulting system of partial differential equations was discretized by applying a basic explicit finite differences scheme. Moreover, the stability and convergence analysis were performed to obtain restrictions that were especially for the magnetic parameters, which are of crucial importance for this problem. The acquired results are shown graphically and were examined for several values of the dimensionless parameters. The flow and temperature distributions were increased as the values of the magnetic parameters were increased. With the progression in time, the flow profile and temperature distribution were also increased. It is hoped that the results of this problem will be used for high targeting efficiency toward determining the maximum values of magnetic field for which accurate flow predictions could be made using a very simple numerical scheme.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Haiyan Yuan ◽  
Jingjun Zhao ◽  
Yang Xu

This paper is devoted to the stability and convergence analysis of the Additive Runge-Kutta methods with the Lagrangian interpolation (ARKLMs) for the numerical solution of multidelay-integro-differential equations (MDIDEs). GDN-stability and D-convergence are introduced and proved. It is shown that strongly algebraically stability gives D-convergence, DA- DAS- and ASI-stability give GDN-stability. A numerical example is given to illustrate the theoretical results.


Robotica ◽  
2005 ◽  
Vol 23 (5) ◽  
pp. 635-644 ◽  
Author(s):  
Subashini Elangovan ◽  
Peng-Yung Woo

An adaptive fuzzy sliding control scheme is proposed to control a passive robotic manipulator. The motivation for the design of the adaptive fuzzy sliding controller is to eliminate the chattering and the requirement of pre-knowledge on bounds of error associated with the conventional sliding control. The stability and convergence of the adaptive fuzzy sliding controller is proven both theoretically and practically by simulations. A three-link passive manipulator model with two unactuated joints is derived to be used in the simulations. Simulation results demonstrate that the proposed system is robust against structured and unstructured uncertainties.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Haiyan Yuan ◽  
Jingjun Zhao ◽  
Yang Xu

This paper is devoted to the stability and convergence analysis of the additive Runge-Kutta methods with the Lagrangian interpolation (ARKLMs) for the numerical solution of a delay differential equation with many delays. GDN stability and D-Convergence are introduced and proved. It is shown that strongly algebraically stability gives D-Convergence DA, DAS, and ASI stability give GDN stability. Some examples are given in the end of this paper which confirms our results.


2010 ◽  
Vol 6 (2) ◽  
pp. 116-122
Author(s):  
Aamir Hashim Obeid Ahmed ◽  
Martino O. Ajangnay ◽  
Shamboul A. Mohamed ◽  
Matthew W. Dunnigan

Author(s):  
Shakhboz Dadabaev

The main negative factors affecting the starting modes of synchronous electric drives of pumping units of irrigation water supply systems were identified, computer simulation of direct and soft start of synchronous electric drive was made, the simulation results are shown in graphs and a brief conclusion was made on the study.


1998 ◽  
Vol 38 (2) ◽  
pp. 201-208
Author(s):  
M. W. Milke

A need exists for tools to improve evaluations of the economics of landfill gas recovery. A computer simulation tool is presented. It uses a spreadsheet computer program to calculate the economics for a fixed set of inputs, and a simulation program to consider variations in the inputs. The method calculates the methane generated each year, and estimates the costs and incomes associated with the recovery and sale of the gas. Base case results are presented for a city of 500,000. An uncertainty analysis for a hypothetical case is presented. The simulation results can help an analyst see the key variables affecting the economics of a project.


Sign in / Sign up

Export Citation Format

Share Document