scholarly journals Analysis of External Water Pressure for a Tunnel in Fractured Rocks

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ze-jun Liu ◽  
Yong Huang ◽  
Ding Zhou ◽  
Hong Ge

External water pressure around tunnels is a main influential factor in relation to the seepage safety of underground chambers and powerhouses which make managing external water pressure crucial to water conservation and hydropower projects. The equivalent continuous medium model and the discrete fracture network (DFN) model were, respectively, applied to calculate the seepage field of the study domain. Calculations were based on the integrity and permeability of rocks, the extent of fracture development, and the combination of geological and hydrogeological conditions in the Huizhou pump-storage hydropower station. The station generates electricity from the upper reservoir and stores power by pumping water from the lower to the upper reservoir. In this paper, the external water pressure around the cavern and variations in pressure with only one operational and one venting powerhouse were analyzed to build a predictive model. The results showed that the external water pressure was small with the current anti-seepage and drainage system that normal operation of the reservoir can be guaranteed. The results of external water pressure around the tunnels provided sound scientific evidence for the future design of antiseepage systems.

2011 ◽  
Vol 250-253 ◽  
pp. 1873-1876
Author(s):  
Jian Xiu Wang ◽  
Bo Feng ◽  
Pei Wang ◽  
Yi Qun Tang ◽  
Ping Yang

Grouting is often adopted in a tunnel to resist high external water pressure; the tunnel is defined as External Water Pressure-Resistant Tunnel (EWPR Tunnel). When the grouting reinforcement does not seal the high pressure groundwater completely and the leakage groundwater is drained by drainage system, the tunnel can be called a Drained External Water Pressure -Resistant Tunnel with limited Drainage (DEWPR Tunnel), the grouting reinforcement and waterproof/drainage system of which are great important and should be considered specially. Take the traffic tunnels of Jinping Second Cascade Hydropower Station as an example, a numerical method is adopted to simulate the influence of grouting reinforcement thickness on the distribution of external water pressure. The results indicate that the discharge rate per unit length is 7.82m2/d with single tunnel drainage and 5.28m2/d with double-tunnel drainage, and the external water pressure can be reduced less than 0.6MPa when the thickness of grouting reinforcement is 12m based on the control factor of volume of water discharge.


2021 ◽  
Vol 11 (8) ◽  
pp. 3645
Author(s):  
Helin Fu ◽  
Pengtao An ◽  
Long Chen ◽  
Guowen Cheng ◽  
Jie Li ◽  
...  

Affected by the coupling of excavation disturbance and ground stress, the heterogeneity of surrounding rock is very common. Presently, treating the permeability coefficient as a fixed value will reduce the prediction accuracy of the water inflow and the external water pressure of the structure, leading to distortion of the prediction results. Aiming at this problem, this paper calculates and analyzes tunnel water inflow when considering the heterogeneity of permeability coefficient of surrounding rock using a theoretical analysis method, and compares with field data, and verifies the rationality of the formula. The research shows that, when the influence of excavation disturbance and ground stress on the permeability coefficient of surrounding rock is ignored, the calculated value of the external water force of the tunnel structure is too small, and the durability and stability of the tunnel are reduced, which is detrimental to the safety of the structure. Considering the heterogeneity of surrounding rock, the calculation error of water inflow can be reduced from 27.3% to 13.2%, which improves the accuracy of water inflow prediction to a certain extent.


1983 ◽  
Vol 244 (1) ◽  
pp. R66-R73 ◽  
Author(s):  
H. B. Lillywhite ◽  
F. H. Pough

Cardiovascular responses to head-up tilt, acutely graded hemorrhage, and pharmacologic stimulation by principal autonomic drugs were studied in four species of marine snakes, principally Aipysurus laevis (family Hydrophiidae). Arterial pressure varied inversely with tilt angle and blood volume deficit in conscious snakes outside of water, indicating that physiological regulation was poor or lacking. Calculated arterial pressures at head level typically diminished to zero in A. laevis tilted to angles greater than or equal to 30 degrees. Arterial pressure (corrected for external water pressure) did not change when these snakes were tilted in seawater. Changes of arterial pressure induced by tilt, blood loss, or autonomic drugs elicited reflex adjustments in heart activity, but the magnitude of these responses was less than that observed in terrestrial species of snake. It is concluded that baroreflexes are present but comparatively ineffective in sea snakes. Snakes tolerated large losses of blood volume, and extravascular fluids were absorbed into the circulation during hemorrhage; both hemorrhage and estimated hemodilution volumes exceeded 100% of the initial blood volume in Acalyptophis peronii. Thus, in marine snakes major fluid shifts between nonvascular and vascular compartments significantly compensate hypovolemia but, because of minor autonomic adjustments, do not result in a well-regulated arterial pressure.


2005 ◽  
Vol 17 (4) ◽  
pp. 400-406 ◽  
Author(s):  
Andrew F. Hundley ◽  
Morton B. Brown ◽  
Linda Brubaker ◽  
Geoffrey W. Cundiff ◽  
Karl Kreder ◽  
...  

1963 ◽  
Vol 4 (36) ◽  
pp. 809-812
Author(s):  
R. L. Shreve

AbstractIn August 1961 an aluminum pipe (3.5 cm. internal diameter, 4.2 cm. external diameter) having 92 specially modified socket couplings (5.0 cm. external diameter) sealed with a quick-polymerizing synthetic rubber was sunk 226 m. in a vertical water-filled bore hole in Blue Glacier, Washington. U.S.A. The geometry of threads and mating surfaces of pipe and coupling was designed to cause increasing external water pressure to tighten the seal. One joint at a depth of 66 m. immediately developed an extremely slow leak (probably because of faulty cleaning), but the other 91 joints apparently were sound, as the pipe was free of water to a depth of at least 157 m. when resurveyed after one year.


1989 ◽  
Vol 257 (2) ◽  
pp. R358-R364
Author(s):  
K. Miki ◽  
M. R. Klocke ◽  
S. K. Hong ◽  
J. A. Krasney

Water immersion (WI) causes an increase in plasma volume in humans and dogs. To determine the mechanism for this fluid movement, the transmission of external water hydrostatic pressure to the interstitial and vascular compartments was studied in six conscious dogs. Systemic arterial, central venous, peripheral arterial (ulnar artery) and venous (cephalic vein), pleural, intra-abdominal, and interstitial fluid hydrostatic (by Guyton's capsule and wick catheter method) pressures and external reference water pressure were measured at three different levels of WI: 1) extremities only, 2) midchest, and 3) midcervical levels at 37 degrees C. There was a significant linear relationship between interstitial fluid hydrostatic pressure (X) and external water pressure (Y): (Y = 0.86X + 1.4, r = 0.93 by Guyton's capsule; Y = 0.85X + 2.4, r = 0.93 by wick catheter. However, vascular pressures did not change when dogs were immersed at the level of the extremities. These pressures increased only during WI at the midchest and midcervical levels. Therefore the pressure gradient that develops between the interstitial and intravascular compartments is probably the major reason for the transcapillary fluid shift during WI.


1996 ◽  
Vol 60 (6) ◽  
pp. 1013-1019 ◽  
Author(s):  
C.T.F. Ross ◽  
P. Haynes ◽  
W.D. Richards

Sign in / Sign up

Export Citation Format

Share Document