scholarly journals Establishment and Evaluation of a Loop-Mediated Isothermal Amplification Assay for Detection of Raccoon Dog in Meat Mixtures

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Jinhua Liu ◽  
Yanyu Shi ◽  
Siying Teng ◽  
Lianpeng Wu ◽  
Xinmin Zhang

Raccoon dog (Nyctereutes procyonoides) is an economically important animal used for fur production, but consuming its meat is injurious to human health. Currently, no rapid and sensitive method for detecting raccoon dog meat in meat mixtures is available. In this study, we developed an easily applicable, rapid, and economically feasible method for identifying the presence of raccoon dog in meat mixtures based on loop-mediated isothermal amplification (LAMP). Four sets of LAMP primers were tested at different temperatures, and the primers that worked best at 62°C (set 2) were determined. In the LAMP assay, there was no cross-reactivity with the meat procured from other species of animals and the detection limit of DNA concentration was 0.1 pg·μL−1, slightly higher than TaqMan real-time PCR (0.01 pg·μL−1), but sensitivity of 0.1 pg·μL−1 complies with most requirements of routine analysis. Moreover, by the LAMP method, the meat mixtures containing more than 0.5% of the raccoon dog component were directly detected (without DNA extraction) in the supernatant isolated from the meat mixtures after performing repeated cycles of thawing and freezing of minced meat mixtures. Our results show that LAMP assay is a valuable, straightforward, and sensitive detection tool for identification of raccoon dog meat in mixtures.

2011 ◽  
Vol 24 (1) ◽  
pp. 174-177 ◽  
Author(s):  
Jun Qiao ◽  
Qingling Meng ◽  
Xuepeng Cai ◽  
Chuangfu Chen ◽  
Zaichao Zhang ◽  
...  

Betacoronavirus 1 (BCoV-1) is an important pathogen causing diarrhea in calves. In the current study, a novel reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid detection of BCoV-1 was successfully developed. The primers were designed to target the highly conserved fragment of BCoV-1 nucleocapsid gene. The assay displayed high specificity detecting only BCoV-1 with no cross reaction with other viruses. When 418 clinical samples from 6 different geographical areas of Xinjiang province were tested by the RT-LAMP method, the results indicated that this test is a simple, rapid, accurate, and sensitive method for the detection of BCoV-1.


2020 ◽  
Author(s):  
Sumyya Waliullah ◽  
Jessica Bell ◽  
Tammy Stackhouse ◽  
Ganpati Jagdale ◽  
Abolfazl Hajihassani ◽  
...  

AbstractMeloidogyne partityla is the dominant root-knot nematode (RKN) species parasitizing pecan in Georgia. This species is known to cause a reduction in root growth and a decline in yields from mature pecan trees. Rapid and accurate diagnosis of this RKN is required to control this nematode disease and reduce losses in pecan production. In this study, a loop-mediated isothermal amplification (LAMP) method was developed for simple, rapid and on-site detection of M. partityla in infested plant roots and validated to detect the nematode in laboratory and field conditions. Specific primers were designed based on the sequence distinction of internal transcribed spacer (ITS)-18S/5.8S ribosomal RNA gene between M. partityla and other Meloidogyne spp. The LAMP detection technique could detect the presence of M. partityla genomic DNA at a concentration as low as 1 pg, and no cross reactivity was found with DNA from other major RKN species such as M. javanica, M. incognita and M. arenaria, and M. hapla. We also conducted a traditional morphology-based diagnostic assay and conventional polymerase chain reaction (PCR) assay to determine which of these techniques was less time consuming, more sensitive, and convenient to use in the field. The LAMP assay provided more rapid results, amplifying the target nematode species in less than 60 min at 65°C, with results 100 times more sensitive than conventional PCR (~2-3 hrs). Morphology-based, traditional diagnosis was highly time-consuming (2 days) and more laborious than conventional PCR and LAMP assays. These features greatly simplified the operating procedure and made the assay a powerful tool for rapid, on-site detection of pecan RKN, M. partityla. The LAMP assay will facilitate accurate pecan nematode diagnosis in the field and contribute to the management of the pathogen.


2011 ◽  
Vol 47 (No. 4) ◽  
pp. 140-148 ◽  
Author(s):  
N. Rostamkhani ◽  
A. Haghnazari ◽  
M. Tohidfar ◽  
A. Moradi

In an attempt to speed up the process of screening of transgenic cotton (G. hirsutum L.) plants, a visual and rapid loop-mediated isothermal amplification (LAMP) assay was adopted. Genomic DNA was extracted from fresh leaf tissues of T<sub>2</sub> transgenic cotton containing chitinase (chi) and cry1A(b) genes. Detection of genes of interest was performed by polymerase chain reaction (PCR), LAMP and real-time PCR methods. In LAMP assay the amplification was performed after 30 min at 65&deg;C when loop primers were involved in the reaction. The involvement of loop primers decreased the time needed for amplification. By testing serial tenfold dilutions (10<sup>&ndash;1</sup> to 10<sup>&ndash;8</sup>) of the genes of interest, the detection sensitivity of LAMP was found to be 100-fold higher than that of PCR. The rapid DNA extraction method and LAMP assay can be performed within 30 min and the derived LAMP products can be directly observed as visually detectable based on turbidity in the reaction tube. The accuracy of LAMP method in the screening of transgenes was confirmed by PCR and real-time PCR. The developed method was efficient, rapid and sensitive in the screening of cotton transgenic plants. This method can be applied to any other crops.


2008 ◽  
Vol 57 (4) ◽  
pp. 439-443 ◽  
Author(s):  
Basu Dev Pandey ◽  
Ajay Poudel ◽  
Tomoko Yoda ◽  
Aki Tamaru ◽  
Naozumi Oda ◽  
...  

A number of nucleic acid amplification assays (NAAs) have been employed to detect tubercle bacilli in clinical specimens for tuberculosis (TB) diagnosis. Among these, loop-mediated isothermal amplification (LAMP) is an NAA possessing superior isothermal reaction characteristics. In the present study, a set of six specific primers targeting the Mycobacterium tuberculosis 16S rRNA gene with high sensitivity was selected and a LAMP system (MTB-LAMP) was developed. Using this system, a total of 200 sputum samples from Nepalese patients were investigated. The sensitivity of MTB-LAMP in culture-positive samples was 100 % (96/96), and the specificity in culture-negative samples was 94.2 % (98/104, 95 % confidence interval 90.5–97.9 %). The positive and negative predictive values of MTB-LAMP were 94.1 and 100 %, respectively. These results indicate that this MTB-LAMP method may prove to be a powerful tool for the early diagnosis of TB.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 909-915 ◽  
Author(s):  
Gavin J. Ash ◽  
Jillian M. Lang ◽  
Lindsay R. Triplett ◽  
Benjamin J. Stodart ◽  
Valérie Verdier ◽  
...  

The vast amount of data available through next-generation sequencing technology is facilitating the design of diagnostic marker systems. This study reports the use of draft genome sequences from the bacterial plant pathogen Pseudomonas fuscovaginae, the cause of sheath brown rot of rice, to describe the genetic diversity within a worldwide collection of strains representing the species. Based on a comparative analysis with the draft sequences, primers for a loop-mediated isothermal amplification (LAMP) assay were developed to identify P. fuscovaginae. The assay reported here reliably differentiated strains of P. fuscovaginae isolated from rice from a range of other bacteria that are commonly isolated from rice and other plants using a primer combination designated Pf8. The LAMP assay identified P. fuscovaginae purified DNA, live or heat-killed cells from pure cultures, and detected the bacterium in extracts or exudates from infected host plant material. The P. fuscovaginae LAMP assay is a suitable diagnostic tool for the glasshouse and laboratory and could be further developed for in-field surveys.


2020 ◽  
Vol 56 (24) ◽  
pp. 3536-3538 ◽  
Author(s):  
Rongxing Zhou ◽  
Yongya Li ◽  
Tianyu Dong ◽  
Yanan Tang ◽  
Feng Li

CRISPR Cas12a enables a sequence-specific plasmonic LAMP assay with dual complementary color readouts.


Author(s):  
Maryam ARFAATABAR ◽  
Narjes NOORI GOODARZI ◽  
Davoud AFSHAR ◽  
Hamed MEMARIANI ◽  
Ghasem AZIMI ◽  
...  

  Background: Mycoplasma pneumoniae is a common cause of community-acquired pneumonia (CAP) worldwide, especially among children and debilitated populations. The present study aimed to investigate a loop-mediated isothermal amplification (LAMP) technique for rapid detection of M. pneumoniae in clini-cal specimens collected from patients with pneumonia. Methods: Throat swabs were collected from 110 outpatients who suffered from pneumonia. Throat swab samples were obtained from patients referred to the hospital outpatient clinics of Tehran University hospitals, Iran in 2017. The presence of M. pneumoniae in the clinical specimens was evaluated by LAMP, PCR and culture methods. Sensitivity and specificity of the LAMP and PCR assays were also determined. Results: Out of 110 specimens, LAMP assay detected M. pneumoniae in 35 specimens. Detection limit of the LAMP assay was determined to be 33fg /μL or ~ 40 genome copies/reaction. Moreover, no cross-reaction with genomic DNA from other bacteria was observed. Only 25 specimens were positive by the culture method. The congruence between LAMP assay and culture method was ‘substantial’ (κ=0.77). Specificity and sensitivity of LAMP assay were 88.2%, 100% in compare with culture. However, the con-gruence between LAMP assay and PCR assay was ‘almost perfect’ (κ=0.86). Specificity and sensitivity of LAMP assay were 92.5%, 100% in compare with PCR. Conclusion: Overall, the LAMP assay is a rapid and cost-efficient laboratory test in comparison to other methods including PCR and culture. Therefore, the LAMP method can be applied in identification of M. pneumoniae isolates in respiratory specimens.


2014 ◽  
Vol 77 (9) ◽  
pp. 1593-1598 ◽  
Author(s):  
HEE-JIN DONG ◽  
AE-RI CHO ◽  
TAE-WOOK HAHN ◽  
SEONGBEOM CHO

Campylobacter jejuni is a leading cause of bacterial foodborne disease worldwide. The detection of this organism in cattle and their environment is important for the control of C. jejuni transmission and the prevention of campylobacteriosis. Here, we describe the development of a rapid and sensitive method for the detection of C. jejuni in naturally contaminated cattle farm samples, based on real-time loop-mediated isothermal amplification (LAMP) of the hipO gene. The LAMP assay was specific (100%inclusivity and exclusivity for 84 C. jejuni and 41 non–C. jejuni strains, respectively), sensitive (detection limit of 100 fg/μl), and quantifiable (R2 = 0.9133). The sensitivity of the LAMP assay was then evaluated for its application to the naturally contaminated cattle farm samples. C. jejuni strains were isolated from 51 (20.7%) of 246 cattle farm samples, and the presence of the hipO gene was tested using the LAMP assay. Amplification of the hipO gene by LAMP within 30 min (mean =10.8 min) in all C. jejuni isolates (n = 51) demonstrated its rapidity and accuracy. Next, template DNA was prepared from a total of 186 enrichment broth cultures of cattle farm samples either by boiling or using a commercial kit, and the sensitivity of detection of C. jejuni was compared between the LAMP and PCR assays. In DNA samples prepared by boiling, the higher sensitivity of the LAMP assay (84.4%) compared with the PCR assay (35.5%) indicates that it is less susceptible to the existence of inhibitors in sample material. In DNA samples prepared using a commercial kit, both the LAMP and PCR assays showed 100% sensitivity. We anticipate that the use of this rapid, sensitive, and simple LAMP assay, which is the first of its kind for the identification and screening of C. jejuni in cattle farm samples, may play an important role in the prevention of C. jejuni contamination in the food chain, thereby reducing the risk of human campylobacteriosis.


2013 ◽  
Vol 16 (1) ◽  
pp. 131-133 ◽  
Author(s):  
Ł. Adaszek ◽  
M. Jankowska ◽  
M. Kalinowski ◽  
T. Banach ◽  
D. Wułupek ◽  
...  

Abstract The aim of this study was to use a rapid and easy DNA-based test, the loop-mediated isothermal amplification (LAMP), for diagnosis of Babesia canis canis infections in dogs. 10 DNA samples of 18S RNA-A and 10 DNA samples of 18S RNA-B of B. canis canis were used in the study. LAMP method could successfully detect DNA in all examined samples down to 0.1 pg dilution. Obtained results suggest that this method has high specificity and sensitivity and can be applied in analytical laboratories in diagnosis of canine babesiosis.


Author(s):  
Jian-min Zhang ◽  
Hai-yan Shen ◽  
Ming Liao ◽  
Tao Ren ◽  
Li-li Guo ◽  
...  

Haemophilus parasuis is the etiological agent of Glässer’s disease, which is characterised by fibrinous polyserositis, meningitis and polyarthritis, causing severe economic losses to the swine industry. In this study, a loop-mediated isothermal amplification (LAMP) test was developed to improve the specificity, facility and speed of diagnosis of H. parasuis isolates. The LAMP assay rapidly amplified the target gene within 50 min incubation at 63 °C in a laboratory water bath. The LAMP amplicon could be visualised directly in the reaction tubes following the addition of SYBR Green I dye. The detection limit of this LAMP method was 10 CFU/mL, which was 10 times more sensitive than the earlier 16S rRNA polymerase chain reaction (PCR) test conducted by Oliveira, Galina and Pijoan (2001), and no cross-reactivity was observed from other non-H. parasuis strains. This LAMP test was evaluated further on 187 clinical specimens from pigs suspected of being infected with H. parasuis. Forty-three were found positive by bacterial isolation of H. parasuis, as well as by the 16S rRNA PCR and LAMP tests. The 43 H. parasuis isolates were classified into 9 serovars and had 37 genetic patterns when analysed by pulsed-field gel electrophoresis (PFGE). This displayed that various H. parasuis serovars and genotypes were widely distributed in South China. Therefore, the speed, specificity and sensitivity of the LAMP test, the lack of a need for expensive equipment, and the visual readout showed great potential for a correct clinical diagnosis of H. parasuis in favour of controlling Glässer’s disease.


Sign in / Sign up

Export Citation Format

Share Document