scholarly journals Efficient and Fast Differentiation of Human Neural Stem Cells from Human Embryonic Stem Cells for Cell Therapy

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xinxin Han ◽  
Liming Yu ◽  
Jie Ren ◽  
Min Wang ◽  
Zhongliang Liu ◽  
...  

Stem cell-based therapies have been used for repairing damaged brain tissue and helping functional recovery after brain injury. Aberrance neurogenesis is related with brain injury, and multipotential neural stem cells from human embryonic stem (hES) cells provide a great promise for cell replacement therapies. Optimized protocols for neural differentiation are necessary to produce functional human neural stem cells (hNSCs) for cell therapy. However, the qualified procedure is scarce and detailed features of hNSCs originated from hES cells are still unclear. In this study, we developed a method to obtain hNSCs from hES cells, by which we could harvest abundant hNSCs in a relatively short time. Then, we examined the expression of pluripotent and multipotent marker genes through immunostaining and confirmed differentiation potential of the differentiated hNSCs. Furthermore, we analyzed the mitotic activity of these hNSCs. In this report, we provided comprehensive features of hNSCs and delivered the knowledge about how to obtain more high-quality hNSCs from hES cells which may help to accelerate the NSC-based therapies in brain injury treatment.

Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1043 ◽  
Author(s):  
Phil Jun Kang ◽  
Daryeon Son ◽  
Tae Hee Ko ◽  
Wonjun Hong ◽  
Wonjin Yun ◽  
...  

Human neural stem cells (NSCs) hold enormous promise for neurological disorders, typically requiring their expandable and differentiable properties for regeneration of damaged neural tissues. Despite the therapeutic potential of induced NSCs (iNSCs), a major challenge for clinical feasibility is the presence of integrated transgenes in the host genome, contributing to the risk for undesired genotoxicity and tumorigenesis. Here, we describe the advanced transgene-free generation of iNSCs from human urine-derived cells (HUCs) by combining a cocktail of defined small molecules with self-replicable mRNA delivery. The established iNSCs were completely transgene-free in their cytosol and genome and further resembled human embryonic stem cell-derived NSCs in the morphology, biological characteristics, global gene expression, and potential to differentiate into functional neurons, astrocytes, and oligodendrocytes. Moreover, iNSC colonies were observed within eight days under optimized conditions, and no teratomas formed in vivo, implying the absence of pluripotent cells. This study proposes an approach to generate transplantable iNSCs that can be broadly applied for neurological disorders in a safe, efficient, and patient-specific manner.


2020 ◽  
Author(s):  
Anna Badner ◽  
Emily K. Reinhardt ◽  
Theodore V. Nguyen ◽  
Nicole Midani ◽  
Andrew T. Marshall ◽  
...  

AbstractHuman neural stem cells (hNSCs) have potential as a cell therapy following traumatic brain injury (TBI). While various studies have demonstrated the efficacy of NSCs from on-going culture, there is a significant gap in our understanding of freshly thawed cells from cryobanked stocks – a more clinically-relevant source. To address these shortfalls, the therapeutic potential of our previously validated Shef-6.0 human embryonic stem cell (hESC)-derived hNSC line was tested following long-term cryostorage and thawing prior to transplant. Immunodeficient athymic nude rats received a moderate unilateral controlled cortical impact (CCI) injury. At 4-weeks post-injury, 6×105 freshly thawed hNSCs were transplanted into six injection sites (2 ipsi- and 4 contra-lateral) with 53.4% of cells surviving three months post-transplant. Interestingly, most hNSCs were engrafted in the meninges and the lining of lateral ventricles, associated with high CXCR4 expression and a chemotactic response to SDF1alpha (CXCL12). While some expressed markers of neuron, astrocyte, and oligodendrocyte lineages, the majority remained progenitors, identified through doublecortin expression (78.1%). Importantly, transplantation resulted in improved spatial learning and memory in Morris water maze navigation and reduced risk-taking behavior in an elevated plus maze. Investigating potential mechanisms of action, we identified an increase in ipsilateral host hippocampus cornu ammonis (CA) neuron survival, contralateral dentate gyrus (DG) volume and DG neural progenitor morphology as well as a reduction in neuroinflammation. Together, these findings validate the potential of hNSCs to restore function after TBI and demonstrate that long-term bio-banking of cells and thawing aliquots prior to use may be suitable for clinical deployment.Significance StatementThere is no cure for chronic traumatic brain injury (TBI). While human neural stem cells (hNSCs) offer a potential treatment, no one has demonstrated efficacy of thawed hNSCs from long-term cryobanked stocks. Frozen aliquots are critical for multisite clinical trials, as this omission impacted the use of MSCs for graft versus host disease. This is the first study to demonstrate the efficacy of thawed hNSCs, while also providing support for novel mechanisms of action – linking meningeal and ventricular engraftment to reduced neuroinflammation and improved hippocampal neurogenesis. Importantly, these changes also led to clinically relevant effects on spatial learning/memory and risk-taking behavior. Together, this new understanding of hNSCs lays a foundation for future work and improved opportunities for patient care.


2017 ◽  
Vol 34 (11) ◽  
pp. 1981-1995 ◽  
Author(s):  
Markus S. Spurlock ◽  
Aminul I. Ahmed ◽  
Karla N. Rivera ◽  
Shoji Yokobori ◽  
Stephanie W. Lee ◽  
...  

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 267
Author(s):  
Citlali Helenes González ◽  
Suwan N. Jayasinghe ◽  
Patrizia Ferretti

Background: Bio-electrospray (BES) is a jet-based delivery system driven by an electric field that has the ability to form micro to nano-sized droplets. It holds great potential as a tissue engineering tool as it can be used to place cells into specific patterns. As the human central nervous system (CNS) cannot be studied in vivo at the cellular and molecular level, in vitro CNS models are needed. Human neural stem cells (hNSCs) are the CNS building block as they can generate both neurones and glial cells. Methods: Here we assessed for the first time how hNSCs respond to BES. To this purpose, different hNSC lines were sprayed at 10 kV and their ability to survive, grow and differentiate was assessed at different time points. Results: BES induced only a small and transient decrease in hNSC metabolic activity, from which the cells recovered by day 6, and no significant increase in cell death was observed, as assessed by flow cytometry. Furthermore, bio-electrosprayed hNSCs differentiated as efficiently as controls into neurones, astrocytes and oligodendrocytes, as shown by morphological, protein and gene expression analysis. Conclusions: This study highlights the robustness of hNSCs and identifies BES as a suitable technology that could be developed for the direct deposition of these cells in specific locations and configurations.


2020 ◽  
Vol 21 (2) ◽  
pp. 233-248 ◽  
Author(s):  
Xiang Chen ◽  
Kai Ye ◽  
Jiahong Yu ◽  
Jianyi Gao ◽  
Lei Zhang ◽  
...  

2019 ◽  
Vol 26 (1) ◽  
pp. 1-16
Author(s):  
Jeong Eun Shin ◽  
Jungho Han ◽  
Joo Hee Lim ◽  
Ho Seon Eun ◽  
Kook In Park

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xinxin Han ◽  
Liming Yu ◽  
Qingqing Chen ◽  
Min Wang ◽  
Jie Ren ◽  
...  

Monkeys are much closer to human and are the most common nonhuman primates which are used in biomedical studies. Neural progenitor cells can originate from the hippocampus of adult monkeys. Despite a few reports, the detailed properties of monkey neural stem cells (NSCs) and their responses to cytokine are still unclear. Here, we derive NSCs from an adult monkey brain and demonstrate that BMP4 inhibits cell proliferation and affects cell morphology of monkey NSCs. Combined treatment of BMP4 and LIF or RA and Forskolin represses the proliferation of monkey NSCs. We also show that BMP4 may promote monkey NSC quiescence. Our study therefore provides implications for NSC-based cell therapy of brain injury in the future.


2016 ◽  
Vol 281 ◽  
pp. 1-16 ◽  
Author(s):  
Daniel L. Haus ◽  
Luci López-Velázquez ◽  
Eric M. Gold ◽  
Kelly M. Cunningham ◽  
Harvey Perez ◽  
...  

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 267
Author(s):  
Citlali Helenes González ◽  
Suwan N. Jayasinghe ◽  
Patrizia Ferretti

Background: Bio-electrospray (BES) is a jet-based delivery system driven by an electric field that has the ability to form micro to nano-sized droplets. It holds great potential as a tissue engineering tool as it can be used to place cells into specific patterns. As the human central nervous system (CNS) cannot be studied in vivo at the cellular and molecular level, in vitro CNS models are needed. Human neural stem cells (hNSCs) are the CNS building block as they can generate both neurones and glial cells. Methods: Here we assessed for the first time how hNSCs respond to BES. To this purpose, different hNSC lines were sprayed at 10 kV and their ability to survive, grow and differentiate was assessed at different time points. Results: BES induced only a small and transient decrease in hNSC metabolic activity, from which cells recovered by day 6, and no significant increase in cell death was observed, as assessed by flow cytometry. Furthermore, bio-electrosprayed hNSCs differentiated as efficiently as controls into neurones, astrocytes and oligodendrocytes as shown by morphological, protein and gene expression analysis. Conclusions: This study highlights the robustness of hNSCs and identifies BES as a suitable technology that could be developed for the direct deposition of these cells in specific locations and configurations.


Sign in / Sign up

Export Citation Format

Share Document