scholarly journals Improvement of Corona Discharge Model and Its Application on Simulating Corona Discharge in the Presence of Wind

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xiufeng Guo ◽  
Qilin Zhang ◽  
Jinbo Zhang

To evaluate the effect of wind on corona discharges occurring on the tip of a grounded rod during a negative charging process of thundercloud, a two-dimensional numerical model has been improved by considering the wind velocity as a driving force for the movement of the corona charges. It was found that not only wind speed but also wind direction have a significant effect on the distribution of corona charges, the local electric field around the rod, and the corona current. (1) Under the same wind speed, a larger horizontal wind can result in less accumulation of corona charges, a larger electric field, and a larger corona current. However, when the speed is less than 5 m s−1, the effect of wind direction on the corona current was weak. (2) Under the same wind direction, a larger wind speed can cause a larger corona current. However, when the horizontal wind component is smaller than the vertical, the larger wind speed would cause a smaller electric field. Thus, it is necessary to take the effects of the wind direction into consideration, rather than to consider its speed only, when studying the corona discharge and its effects on the upward leader.

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4696
Author(s):  
Lu Qu ◽  
Yu Wang ◽  
Gang Liu ◽  
Minchuan Liao ◽  
Hansheng Cai ◽  
...  

Recent lightning simulation experiments have not simulated the influence of blade rotation in the long term after corona inception. This study uses a finite element method and considers the adhesion and collision processes of positive ions, aerosol ions, and neutral particles to establish a two-dimensional positive corona discharge model based on a multicomponent diffusion transport equation. The microscopic distribution of these three types of particles and the influence mechanism of charged particles’ migration under electric fields and wind were studied. The results show that ion migration is affected by both electric field and wind speed. The higher the wind speed, the larger is the deviation amplitude of charged particles along the direction of wind. With an increase in wind speed, the corona current on the receptor surface gradually increases. When the wind speed is 30 m/s, the corona current peak value increases by almost six times when compared with that when no wind is present. From this, it can be inferred that blade rotation reduces the concentration of positive ion in the receptor area, thereby facilitating electron avalanche and streamer-leader conversion.


2016 ◽  
Vol 801 ◽  
pp. 130-149 ◽  
Author(s):  
F. J. Higuera

The neutralization of a dilute spray of electrically charged droplets by ions of the opposite polarity generated by a corona discharge at a wire ring is analysed numerically. A Lagrangian description of the spray and Eulerian descriptions of the gas and the ions are used to deal with this two-way coupled problem. A model of the corona consisting of a line of charge and a distribution of ion sources is proposed. In the configuration that is analysed, neutralization usually begins at the shroud of the spray and extends to inner regions when the corona current increases. The number density of droplets is large at the shroud due to neutralized droplets that are no longer pushed by the electric field. These droplets can be dragged towards a collector surface by a weak forced flow that overcomes the ionic wind due to the force of the ions on the gas. The fraction of the spray charge that is neutralized increases with the corona current, but the value of this current required for full neutralization is several times larger than the inlet electric current of the spray owing to loss of ions to the boundaries of the system. The electric field induced by the charge of the droplets opposes the field due to the voltage applied between the wire ring and the extractor through which the droplets are injected, and thus reduces the threshold voltage of the corona and significantly affects its current–voltage characteristic, which may become multivalued. In turn, the electric field due to the applied voltage and the space charge of the ions affects the shape of the spray and the velocity of the droplets.


2011 ◽  
Vol 228-229 ◽  
pp. 1070-1074
Author(s):  
Zhen Biao Liu ◽  
Li Zhong Xu ◽  
Xiang Sheng Guo

Electronic corona may be obturated when dust load at inlet of ESP is more than 500g/Nm3, it will influence dedusting efficiency. Through analysis on current and electric intensity, we set up experiment device and use WS corona wire, fishbone corona wire, long dentation corona wire, V15 wire and RS corona wire to test their volt-ampere characteristics. This experiment indicates that the corona current produced by V15 and long dentation corona wires is higher, i.e. we can get higher corona current under same voltage to produce stronger corona discharge and electric wind, and it has little possibility to occur corona obturation in electric field. We can get the conclusion that V-typed corona wire is more suitable and economic for high dust load application.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1284
Author(s):  
Zhao-Yu Chen ◽  
Yen-Hsyang Chu ◽  
Ching-Lun Su

Concurrent measurements of three-dimensional wind velocities made with three co-located wind profilers operated at frequencies of 52 MHz, 449 MHz, and 1.29 GHz for the period 12–16 September 2017 are compared for the first time in this study. The velocity–azimuth display (VAD) method is employed to estimate the wind velocities. The result shows that, in the absence of precipitation, the root mean square difference (RMSD) in the horizontal wind speed velocities U and wind directions D between different pairs of wind profilers are, respectively, in the range of 0.94–0.99 ms−1 and 7.7–8.3°, and those of zonal wind component u and meridional wind component v are in the respective ranges of 0.91–1.02 ms−1 and 1.1–1.24 ms−1. However, the RMSDs between wind profilers and rawinsonde are in the range of 2.89–3.26 ms−1 for horizontal wind speed velocity and 11.17–14.48° for the wind direction, which are around 2–3 factors greater than those between the wind profilers on average. In addition to the RMSDs, MDs between wind profilers and radiosonde are around one order of magnitude larger than those between wind profilers. These results show that the RMSDs, MDs, and Stdds between radars are highly consistent with each other, and they are much smaller than those between radar and rawinsonde. This therefore suggests that the wind profiler-measured horizontal wind velocities are much more reliable, precise, and accurate than the rawinsonde measurement.


2020 ◽  
Author(s):  
Steven Knoop ◽  
Fred C. Bosveld ◽  
Marijn J. de Haij ◽  
Arnoud Apituley

Abstract. A two-year measurement campaign of the ZephIR 300 vertical profiling continuous-wave (CW) focusing wind lidar has been carried out by the Royal Netherlands Meteorological Institute (KNMI) at the Cabauw site. We focus on the (height-dependent) data availability of the wind lidar under various meteorological conditions and the data quality through a comparison with in situ wind measurements at several levels in the 213-m tall meteorological mast. We find an overall availability of quality controlled wind lidar data of 97 % to 98 %, where the missing part is mainly due to precipitation events exceeding 1 mm/h or fog or low clouds below 100 m. The mean bias in the horizontal wind speed is within 0.1 m/s with a high correlation between the mast and wind lidar measurements, although under some specific conditions (very high wind speed, fog or low clouds) larger deviations are observed. The mean bias in the wind direction is within 2°, which is on the same order as the combined uncertainty in the alignment of the wind lidars and the mast wind vanes. The well-known 180° error in the wind direction output for this type of instrument occurs about 9 % of the time. A correction scheme based on data of an auxiliary wind vane at a height of 10 m is applied, leading to a reduction of the 180° error below 2 %. This scheme can be applied in real-time applications in case a nearby, freely exposed, mast with wind direction measurements at a single height is available.


2021 ◽  
Vol 14 (3) ◽  
pp. 2219-2235
Author(s):  
Steven Knoop ◽  
Fred C. Bosveld ◽  
Marijn J. de Haij ◽  
Arnoud Apituley

Abstract. A 2-year measurement campaign of the ZephIR 300 vertical profiling continuous-wave (CW) focusing wind lidar has been carried out by the Royal Netherlands Meteorological Institute (KNMI) at the Cabauw site. We focus on the (height-dependent) data availability of the wind lidar under various meteorological conditions and the data quality through a comparison with in situ wind measurements at several levels in the 213 m tall meteorological mast. We find an overall availability of quality-controlled wind lidar data of 97 % to 98 %, where the missing part is mainly due to precipitation events exceeding 1 mm h−1 or fog or low clouds below 100 m. The mean bias in the horizontal wind speed is within 0.1 m s−1 with a high correlation between the mast and wind lidar measurements, although under some specific conditions (very high wind speed, fog or low clouds) larger deviations are observed. The mean bias in the wind direction is within 2∘, which is of the same order as the combined uncertainty in the alignment of the wind lidars and the mast wind vanes. The well-known 180∘ error in the wind direction output for this type of instrument occurs about 9 % of the time. A correction scheme based on data of an auxiliary wind vane at a height of 10 m is applied, leading to a reduction of the 180∘ error below 2 %. This scheme can be applied in real-time applications in the situation that a nearby freely exposed mast with wind direction measurements at a single height is available.


1993 ◽  
Vol 58 (3) ◽  
pp. 496-505
Author(s):  
Ondřej Wein

Partial blocking of the transport surface under the stagnant (nerst) layer is simulated by periodically alternating bands of perfectly insulating zones and active zones with a constant potential of driving force. The numeric solution of the corresponding two-dimensional elliptic problem is represented by a simple empirical correlation for the transfer coefficients. The result is interpreted in terms of a simple electrochemical problem about limiting diffusion currents at electrodes with non-uniform surface activity.


Sign in / Sign up

Export Citation Format

Share Document