scholarly journals Humification and Humic Acid Composition of Suspended Soil in Oligotrophous Environments in South Vietnam

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
E. V. Abakumov ◽  
O. A. Rodina ◽  
A. K. Eskov

Humification is considered to be a global process that is implemented in soils and organic sediments and also in natural water and air. The term “suspended soils” has become increasingly common in recent years. Suspended soils are defined as the part of the organic matter that has not undergone the full decomposition process and has not turned into the humus of terrestrial soils. Suspended soils were shown to contain higher total nitrogen, phosphorus, and potassium contents than the forest soil, but the moisture content in suspended soils was significantly lower. Our study of the structural composition of humic substances in suspended soils was conducted with an aim of evaluating the humification rates and structural composition of humic acids in the suspended soil in tropical forests of South Vietnam. Soil samples from three selected areas were investigated: the soil under phorophytes (mineral soil presented by samples of topsoil of the typical dry savanna landscape) and two soils from epiphytous formations. Samples were collected from savanna-type sparse communities, located on oligotrophous plains in Phú Quốc Island (South Vietnam) in 2015. General properties of the soil and the elemental composition of suspended soils were determined, and the humic substance chemical composition was evaluated using solid state 13C-NMR. Data obtained showed that the pH of the soils under phorophytes was higher than in the suspended soils; basal respiration did not tend to change indices between soils under phorophytes and suspended soils, but the suspended soil was less enriched by nitrogen than the soil under phorophytes. This can be related to the total amount of organic matter exposed to humification in various soils and to the presence of an essential portion of mineral particles in the soil under phorophytes. Data on elemental composition of the humic acids (HAs) indicated that one method of humification is implemented in all three soils that were investigated. The humic acids of the phorophyte soil showed the same content of aromatic fraction as the suspended soil. The most comparable soil type in terms of humic substance composition is Cambisols from humid forests of subboreal and subtropical zones. The humification process implemented in suspended soils showed the absence of mineral compounds or mineral fine earth, which indicated that humification in conditions of pure organic substrates can result in formation of deep humified organic matter, as shown by humic acids with an essential aromatic fraction content.

2017 ◽  
Vol 38 (2) ◽  
pp. 125-147 ◽  
Author(s):  
Evgeny Lodygin ◽  
Vasily Beznosikov ◽  
Evgeny Abakumov

Abstract Soils of Russian European North were investigated in terms of stability and quality of organic matter as well as in terms of soils organic matter elemental composi­tion. Therefore, soil humic acids (HAs), extracted from soils of different natural zones of Russian North-East were studied to characterize the degree of soil organic matter stabilization along a zonal gradient. HAs were extracted from soil of different zonal environments of the Komi Republic: south, middle and north taiga as well as south tundra. Data on elemental composition of humic acids and fulvic acids (FAs) extracted from different soil types were obtained to assess humus formation mechanisms in the soils of taiga and tundra of the European North-East of Russia. The specificity of HAs elemental composition are discussed in relation to environmental conditions. The higher moisture degree of taiga soils results in the higher H/C ratio in humic substances. This reflects the reduced microbiologic activity in Albeluvisols sods and subsequent conser­vation of carbohydrate and amino acid fragments in HAs. HAs of tundra soils, shows the H/C values decreasing within the depth of the soils, which reflects increasing of aromatic compounds in HA structure of mineral soil horizons. FAs were more oxidized and contains less carbon while compared with the HAs. Humic acids, extracted from soil of different polar and boreal environments differ in terms of elemental composition winch reflects the climatic and hydrological regimes of humification.


2019 ◽  
Vol 80 ◽  
pp. 03002
Author(s):  
Maria Elisabete Silva ◽  
Marlene Santos ◽  
Isabel Brás

This study aimed to characterize the humic substances (HS) extracted from landfills wastewater – leachates, with different ages of exploration. To reach the objective it was applied spectroscopy techniques, UV-Vis and FTIR spectra, as well as the ratio between the absorbance analysed. First, the HS were extracted, then fractionated in fulvic acids (FA) and humic acids (HA) and it was evaluated the phytotoxicity. HS content in the leachates were higher than the typical values found in the natural aquatic humic sources. It has been identified that the leachate HS, HA and FA aromatic fractions increased with the increase of the landfilling age, suggesting that the degree of humification increased with the landfilling age. All the HS showed a high aromaticity and humification degree. The HS extracts irrespective of their source presents similar structural composition. The functional groups found are in agreement with the literature: phenols, alcohols, carboxylic groups, aliphatic structures, among others. It was found that HA are mainly organic matter with a higher aromatic degree than FA. The HS and HA showed absence of phytotoxicity, testing by germination index, suggesting that may be used to produce liquid organic fertilizers.


2000 ◽  
Vol 42 (9) ◽  
pp. 195-201 ◽  
Author(s):  
P. Andreasen ◽  
P. B. Mortensen ◽  
A. Stubsgaard ◽  
B. Langdahl

The stabilisation of a sludge-mineral soil mixture and a method to evaluate the state of stabilisation were investigated. The organic matter and nitrogen content are reduced up to 50% during a stabilisation process of three months under Danish climatic conditions. The stabilisation was shown to be an aerobic process limited by oxygen transport within the mixture. The degree of stabilisation was evaluated by oxygen consumption in a water suspension and the results showed that a stable product was achieved when oxygen consumption was stable and in the level of natural occurring aerobic soils (0.1 mgO2/(g DS*hr). The study thereby demonstrates that a stability of a growth media can be controlled by the oxygen consumption method tested.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1067
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bożena Smreczak

The objective of this paper was to investigate the molecular characterization of soil organic matter fractions (humic substances (HS): fulvic acids-FAs, humic acids-HAs, and humins-HNs), which are the most reactive soil components. A wide spectrum of spectroscopic (UV–VIS and VIS–nearIR), as well as electrochemical (zeta potential, particle size diameter, and polydispersity index), methods were applied to find the relevant differences in the behavior, formation, composition, and sorption properties of HS fractions derived from various soils. Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO. Our study showed that significant differences in the molecular structures of FAs, Has, and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic, and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl, and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles. The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition, and sorption properties, which reflects their binding potential to other molecules depending on soil properties resulting from their type. The determined properties of individual HS fractions are presented as averaged characteristics over the examined soils with different physico-chemical properties.


1989 ◽  
Vol 69 (2) ◽  
pp. 253-262 ◽  
Author(s):  
M. SCHNITZER ◽  
P. SCHUPPLI

Organic matter (OM) in the Bainsville and Melfort soils, and in coarse clay and medium silt fractions separated from these soils, was extracted under N2 with 0.5 M NaOH and unadjusted 0.1 M Na4P2O7 solutions. pH ranges of the soils and fractions in contact for 24 h with 0.5 M NaOH and 0.1 M Na4P2O7 solutions extended from 12.2 to 12.6 and 9.0 to 9.4, respectively. Slightly greater proportions of the soil-carbon were extracted by 0.5 M NaOH than by 0.1 M Na4P2O7 solution. The differences, however, did not appear to be significant and may vary from soil to soil. The efficiency of extraction and the characteristics of the extracted materials were assessed on humic acids (HAs), which were isolated from the extracts. From the Bainsville soil and fractions, 0.1 M Na4P2O7 solution extracted more high-molecular weight and more deeply colored HAs than did 0.5 M NaOH solution. But HAs extracted from the Melfort soil and fractions had similar molecular weights and colours. 13C NMR spectra showed that HAs extracted by 0.1 M Na4P2O7 solution tended to be more aromatic than HAs extracted by 0.5 M NaOH solution. Well defined solid-state 13C NMR spectra of HAs, containing up to 69.0% ash, could be recorded. Unadjusted 0.1 M Na4P2O7 solution under N2 was found to be an attractive alternative to 0.5 M NaOH solution as an extractant for soil OM. Key words: Humic acids, E4:E6 ratios, IR spectra, 13C NMR spectra, aromaticity


2012 ◽  
Vol 9 (12) ◽  
pp. 5181-5197 ◽  
Author(s):  
C. Moni ◽  
D. Derrien ◽  
P.-J. Hatton ◽  
B. Zeller ◽  
M. Kleber

Abstract. Physical fractionation is a widely used methodology to study soil organic matter (SOM) dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In this study we explore whether physical fractionation techniques isolate soil compartments in a meaningful and functionally relevant way for the investigation of litter-derived nitrogen dynamics at the decadal timescale. We do so by performing aggregate density fractionation (ADF) and particle size-density fractionation (PSDF) on mineral soil samples from two European beech forests a decade after application of 15N labelled litter. Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM). Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or protective mechanism. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches.


Sign in / Sign up

Export Citation Format

Share Document