scholarly journals Density fractions versus size separates: does physical fractionation isolate functional soil compartments?

2012 ◽  
Vol 9 (12) ◽  
pp. 5181-5197 ◽  
Author(s):  
C. Moni ◽  
D. Derrien ◽  
P.-J. Hatton ◽  
B. Zeller ◽  
M. Kleber

Abstract. Physical fractionation is a widely used methodology to study soil organic matter (SOM) dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In this study we explore whether physical fractionation techniques isolate soil compartments in a meaningful and functionally relevant way for the investigation of litter-derived nitrogen dynamics at the decadal timescale. We do so by performing aggregate density fractionation (ADF) and particle size-density fractionation (PSDF) on mineral soil samples from two European beech forests a decade after application of 15N labelled litter. Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM). Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or protective mechanism. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches.

2012 ◽  
Vol 9 (7) ◽  
pp. 8405-8447 ◽  
Author(s):  
C. Moni ◽  
D. Derrien ◽  
P.-J. Hatton ◽  
B. Zeller ◽  
M. Kleber

Abstract. Physical fractionation is a widely used methodology to study soil organic matter (SOM) dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. We also examine the question whether physical fractionation techniques isolate ecologically meaningful, functionally relevant soil compartments. In this study we explore whether the kind of information that aggregate density fractionation (ADF) and particle size-density fractionation (PSDF) yield on soil OM dynamics is method-specific, similar, or complimentary. We do so by following the incorporation of a 15N label into mineral soils of two European beech forests a decade after its application as 15N labelled litter. Both density and size-based fractionation methods suggested that OM became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. Our results suggest that physical fractionation methods do isolate ecologically relevant functional soil subunits. However, scientists investigating specific aspects of OM dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM). Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or stabilisation process. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches.


Radiocarbon ◽  
2013 ◽  
Vol 55 (2) ◽  
pp. 920-931 ◽  
Author(s):  
Flora Toussaint ◽  
Nadine Tisnérat-Laborde ◽  
Cécile Cathalot ◽  
Roselyne Buscail ◽  
Philippe Kerhervé ◽  
...  

As a main source of freshwater and particles, the Rhône River plays a major role in the biogeochemical cycle of organic carbon (OC) in the Mediterranean Sea. To better understand the origin of organic matter and the processes leading to its export to the coastal sea near the Rhône River, we measured radiocarbon (Δ14C) and stable carbon isotopes (δ13C) in the sediments of the delta, after density fractionation. In April 2007, 3 sites located along an offshore transect (A, C, and E) were sampled for surface sediments, and bulk sediment was separated into 4 fractions of different densities (<1.6, 1.6–2, 2–2.5, and >2.5 g cm−3). In order to better understand the evolution of the OC along the transect, we investigated the OC sources and their evolution for each density fraction. Bulk OC shows a large increase in δ13C from −27.2′ nearshore to −24.5′ at offshore stations while Δ14C decreased from 59′ to −320′. The distribution of δ13C with density displayed a convex pattern at all stations. Except for fraction >2.5 g cm−3, δ13C increases by 2.5′ between stations A and E, indicating a loss of terrestrial signature. The distribution of Δ14C versus density had a concave pattern at all stations: at a single station, it showed a large heterogeneity with a difference of 500–600′ between the <1.6 and 2–2.5 g cm−3 fractions. A decrease in Δ14C of −400′ among the different density fractions was observed along the offshore transect. The density fraction >2.5 g cm−3 had less variability, with an average δ13C of −24.6 ± 0.4′ and Δ14C of −370 ± 115′. Several processes may explain this distribution: retention in the prodelta of large particles; mineralization of all fractions during the transport and deposition in the delta and shelf sediments; and dilution of terrestrial particles in continental shelf pool.


2020 ◽  
Vol 151 (2-3) ◽  
pp. 203-220
Author(s):  
Marcel Lorenz ◽  
Delphine Derrien ◽  
Bernd Zeller ◽  
Thomas Udelhoven ◽  
Willy Werner ◽  
...  

AbstractThe knowledge of tree species dependent turnover of soil organic matter (SOM) is limited, yet required to understand the carbon sequestration function of forest soil. We combined investigations of 13C and 15N and its relationship to elemental stoichiometry along soil depth gradients in 35-year old monocultural stands of Douglas fir (Pseudotsuga menziesii), black pine (Pinus nigra), European beech (Fagus sylvatica) and red oak (Quercus rubra) growing on a uniform post-mining soil. We investigated the natural abundance of 13C and 15N and the carbon:nitrogen (C:N) and oxygen:carbon (O:C) stoichiometry of litterfall and fine roots as well as SOM in the forest floor and mineral soil. Tree species had a significant effect on SOM δ13C and δ15N reflecting significantly different signatures of litterfall and root inputs. Throughout the soil profile, δ13C and δ15N were significantly related to the C:N and O:C ratio which indicates that isotope enrichment with soil depth is linked to the turnover of organic matter (OM). Significantly higher turnover of OM in soils under deciduous tree species depended to 46% on the quality of litterfall and root inputs (N content, C:N, O:C ratio), and the initial isotopic signatures of litterfall. Hence, SOM composition and turnover also depends on additional—presumably microbial driven—factors. The enrichment of 15N with soil depth was generally linked to 13C. In soils under pine, however, with limited N and C availability, the enrichment of 15N was decoupled from 13C. This suggests that transformation pathways depend on litter quality of tree species.


2013 ◽  
Vol 10 (7) ◽  
pp. 11899-11933 ◽  
Author(s):  
I. C. Meier ◽  
C. Leuschner

Abstract. Precipitation as a key determinant of forest productivity influences forest ecosystems also indirectly through alteration of the nutrient status of the soil, but this interaction is not well understood. Along a steep precipitation gradient (from 970 to 520 mm yr−1 over 150 km distance), we studied the consequences of reduced precipitation for the soil and biomass nutrient pools and dynamics in 14 mature European beech (Fagus sylvatica L.) forests on uniform geological substrate. We tested the hypotheses that lowered summer precipitation (1) is associated with less acid soils and a reduced accumulation of organic matter on the forest floor, and (2) reduces nutrient supply from the soil and leads to decreasing foliar and root nutrient concentrations. Soil acidity, the amount of forest floor organic matter, and the associated organic matter N and P pools decreased to about a half from wet to dry sites; the C/P and N/P ratios, but not the C/N ratio, of forest floor organic matter decreased. Net N mineralization (and nitrification) rate and the available P and K pools in the mineral soil did not change with decreasing precipitation. Foliar P and K concentrations (beech sun leaves) increased while N remained constant, resulting in decreasing foliar N/P and N/K ratios. N resorption efficiency increased toward the dry sites. We conclude that a reduction in summer rainfall significantly reduces the soil C, N and P pools but does not result in decreasing foliar N and P contents in beech. However, more effective tree-internal N cycling and the decreasing foliar N/P ratio towards the dry stands indicate that tree growth may increasingly be limited by N and not by P with decreasing precipitation.


2000 ◽  
Vol 42 (9) ◽  
pp. 195-201 ◽  
Author(s):  
P. Andreasen ◽  
P. B. Mortensen ◽  
A. Stubsgaard ◽  
B. Langdahl

The stabilisation of a sludge-mineral soil mixture and a method to evaluate the state of stabilisation were investigated. The organic matter and nitrogen content are reduced up to 50% during a stabilisation process of three months under Danish climatic conditions. The stabilisation was shown to be an aerobic process limited by oxygen transport within the mixture. The degree of stabilisation was evaluated by oxygen consumption in a water suspension and the results showed that a stable product was achieved when oxygen consumption was stable and in the level of natural occurring aerobic soils (0.1 mgO2/(g DS*hr). The study thereby demonstrates that a stability of a growth media can be controlled by the oxygen consumption method tested.


2017 ◽  
Vol 241 ◽  
pp. 79-87 ◽  
Author(s):  
Dennis Grunwald ◽  
Michael Kaiser ◽  
Simone Junker ◽  
Sven Marhan ◽  
Hans-Peter Piepho ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 823
Author(s):  
Anna Zielonka ◽  
Marek Drewnik ◽  
Łukasz Musielok ◽  
Marcin K. Dyderski ◽  
Dariusz Struzik ◽  
...  

Forest ecosystems significantly contribute to the global organic carbon (OC) pool, exhibiting high spatial heterogeneity in this respect. Some of the components of the OC pool in a forest (woody aboveground biomass (wAGB), coarse root biomass (CRB)) can be relatively easily estimated using readily available data from land observation and forest inventories, while some of the components of the OC pool are very difficult to determine (fine root biomass (FRB) and soil organic matter (SOM) stock). The main objectives of our study were to: (1) estimate the SOM stock; (2) estimate FRB; and (3) assess the relationship between both biotic (wAGB, forest age, foliage, stand density) and abiotic factors (climatic conditions, relief, soil properties) and SOM stocks and FRB in temperate forests in the Western Carpathians consisting of European beech, Norway spruce, and silver fir (32 forest inventory plots in total). We uncovered the highest wAGB in beech forests and highest SOM stocks under beech forest. FRB was the highest under fir forest. We noted a considerable impact of stand density on SOM stocks, particularly in beech and spruce forests. FRB content was mostly impacted by stand density only in beech forests without any discernible effects on other forest characteristics. We discovered significant impacts of relief-dependent factors and SOM stocks at all the studied sites. Our biomass and carbon models informed by more detailed environmental data led to reduce the uncertainty in over- and underestimation in Cambisols under beech, spruce, and fir forests for mountain temperate forest carbon pools.


2003 ◽  
Vol 22 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Liu Qiming ◽  
Wang Shijie ◽  
Piao Hechun ◽  
Ouyang Ziyuan

2013 ◽  
Vol 10 (3) ◽  
pp. 1365-1377 ◽  
Author(s):  
M. O. Rappe-George ◽  
A. I. Gärdenäs ◽  
D. B. Kleja

Abstract. Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in Stråsan experimental forest (Norway spruce) in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6), and tension lysimeters were installed in the underlying B horizon (n = 4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i) the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii) indirectly via priming of old SOM, and/or (iii) a suppression of extracellular oxidative enzymes.


Sign in / Sign up

Export Citation Format

Share Document