scholarly journals Fn14 Deficiency Ameliorates Anti-dsDNA IgG-Induced Glomerular Damage in SCID Mice

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jiawen Wu ◽  
Xiaoyun Min ◽  
Li Wang ◽  
Jie Yang ◽  
Ping Wang ◽  
...  

Many studies have demonstrated that anti-dsDNA IgG is closely associated with lupus nephritis. Recently, it was found that activation of the fibroblast growth factor-inducible 14 (Fn14) signaling pathway damages glomerular filtration barrier in MRL/lpr lupus-prone mice. However, MRL/lpr mice have high titers of serum autoantibodies other than anti-dsDNA IgG. The aim of this study was to further explore the effect of Fn14 deficiency on anti-dsDNA IgG-induced glomerular damage in severe combined immunodeficiency (SCID) mice that have no endogenous IgG. Fn14 deficiency was generated in SCID mice. The murine hybridoma cells producing control IgG or anti-dsDNA IgG were intraperitoneally injected into mice. In two weeks, the urine, serum, and kidney tissue samples were harvested from mice at sacrifice. It showed that the injection of anti-dsDNA IgG, but not control IgG hybridoma cells, induced proteinuria and glomerular damage in SCID mice. Between the wild-type (WT) and knockout (KO) mice injected with anti-dsDNA IgG hybridoma cells, the latter showed a decrease in both proteinuria and glomerular IgG deposition. The histopathological changes, inflammatory cell infiltration, and proinflammatory cytokine production were also attenuated in the kidneys of the Fn14-KO mice upon anti-dsDNA IgG injection. Therefore, Fn14 deficiency effectively protects SCID mice from anti-dsDNA IgG-induced glomerular damage.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Silvana DeLorenzo ◽  
Joseph Grande

Abstract Background and Aims Kruppel-like factors (KLFs) comprise a family of zinc-finger transcription factors that play a critical role in development, proliferation, and regeneration following injury. There are over 17 members of this family; recent studies have shown that KLF family members regulate podocyte differentiation, preservation of the glomerular filtration barrier, and regulation of mitochondrial function. However, a role for KLF11 in renal pathophysiology has not been previously established. Method Wild-type (WT) and KLF11 knockout (KO) mice were subjected to unilateral ureteric obstruction (UUO), a well-established model of renal inflammation and fibrosis; controls included mice subjected to manipulation of the ureter without ligation. Kidneys were harvested after 9 days (n=8 animals per group). Semiquantitative histopathologic analysis of renal atrophy, fibrosis, and inflammation was performed in a blinded fashion. Gene expression analysis was performed on renal cortex employing the Pathway Detect RNA array and RNASeq. Results In UUO, renal atrophy was more severe in KLF11 KO mice than WT mice (p<0.001). Deposition of collagen, as assessed by quantitative analysis of Sirus Red stained sections, was greater in KLF11 KO mice, compared to WT mice subjected to UUO; COL3A1 expression was also increased (p<0.05). Atrophy was associated with an increase in F4/80+ (p<0.01) and CD206+ macrophages (p<0.05), but not CD3+ T cells in KLF11 KO vs. WT mice. Induction of CC chemokines, including CCL2, CCL5, CCL7, CCL12, and CCL2 as well as CCR2 was significantly higher in KLF11 KO versus WT mice subjected to UUO (all p<0.001). Expression of NF-kB (p<0.01) and TNF alpha (p<0.01), but not IL-1 beta, IL-6, or IL-10 were significantly higher in KLF11 KO than WT mice with UUO. Expression of TGF-beta 1, Smad2, and Smad3 were also higher in KLF11 KO mice than WT mice with UUO (p<0.05). Conclusion Renal injury in UUO is exacerbated in KLF11 KO mice, compared to WT mice. Injury is associated with increased macrophage influx and production of pro-inflammatory chemokines. Future studies will determine how KLF11 deficiency directs transcription of pro-inflammatory and pro-fibrotic genes.


2021 ◽  
Author(s):  
Atta Mohammad Dost ◽  
Mehmet Gunata ◽  
Onural Ozhan ◽  
Azibe Yildiz ◽  
Nigar Vardi ◽  
...  

Abstract Amikacin (AK) is frequently used in the treatment of gram-negative and some gram-positive infections. However, its use is limited due to nephrotoxicity due to the increase in reactive oxygen radicals. The aim of this study was to investigate the role of carvacrol (CAR) against AK-induced nephrotoxicity in rats. Thirty-two Sprague Dawley rats were randomly divided into four groups as control (Vehicle), AK (400 mg/kg), CAR + AK (80 mg/kg CAR + 400 mg/kg AK), and AK + CAR (400 mg/kg AK + 80 mg/kg CAR) groups. AK and CAR were administered via intramuscular and per-oral for 7 days, respectively. Blood and kidney tissue samples were taken at the end of the experiment. Renal function and histopathological changes were compared, and the relevant parameters of oxidative stress and inflammation were detected. Histopathological findings (necrotic changes and dilatation and inflammatory cell infiltration) significantly increased in the AK group compared to the control group. Also, the rats in the AK group lost weight significantly. It was found that CAR treatment before and after AK significantly improved nephrotoxicity histopathologically (p < 0.05). However, this improvement was not detected biochemically. These results show that CAR treatment before and after AK improves nephrotoxicity in the histopathological level.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Anna Iervolino ◽  
Tim Lange ◽  
Florian Siegerist ◽  
Maximilian Schindler ◽  
Giovambattista Capasso ◽  
...  

Abstract Background and Aims The zebrafish is a powerful animal model to study the glomerular morphology and the function of the permselectivity of the glomerular filtration barrier. Since zebrafish larvae develop quickly and can be bred to transparency, in vivo observation of these animals is possible. At 48 hours post fertilization (dpf), zebrafish develop a single filtering glomerulus which is attached to a pair of renal tubules. Like in mammals, the glomerular filtration barrier consists of a fenestrated endothelium, the glomerular basement membrane (GBM) and interdigitating podocyte foot processes bridged by a molecularly conserved slit diaphragm. By the use of genetically modified zebrafish strains with fluorescently labeled podocytes, it is possible to study alterations of the glomerulus during the development of renal disease directly in vivo and in vitro. As an injury model we used the nitroreductase/metronidazole (NTR/MTZ) zebrafish line to induce podocyte apoptosis and detachment from the GBM. Moreover, treatment of these larvae with MTZ induces glomerular injury that mimics focal segmental glomerulosclerosis (FSGS). The aim of our study was to establish a glomeruli isolation method which allows us to identify deregulation of miRNAs and mRNAs in the injured glomeruli by sequencing. Method The transgenic zebrafish strain Cherry (Tg(nphs2:Eco.nfsB-mCherry); mitfaw2/w2; mpv17a9/a9) which expresses the prokaryotic enzyme nitroreductase (NTR) fused to mCherry, a red fluorescent protein, under the control of the podocyte-specific podocin (nphs2) promoter in a transparent zebrafish strain, was used. The NTR/MTZ is a model of cell ablation to mimic podocyte injury. The prodrug MTZ (80 µM) is converted into a cytotoxin by NTR leading to a dose-dependent apoptosis exclusively in NTR-expressing podocytes. To induce podocyte injury, we treated Cherry larvae at 4 days post fertilization with MTZ (80 µM) freshly dissolved in 0.1% DMSO-E3 medium for 48 hours. Control larvae were treated with 0.1% DMSO-E3 medium. The treatment was stopped by a MTZ washout at 6 dpf. In order to perform the miRNA and mRNA sequencing on glomeruli isolated from MTZ-treated and control larvae we tried to establish a method to obtain total RNA samples of good quality. For this purpose, three different approaches were tested and validated: 1) Sieving method, 2) Fluorescence-Activated Cell Sorting method (FACS), and 3) manual isolation of glomeruli by using a micropipette. Results Zebrafish larvae developed a glomerular damage similar to FSGS after MTZ-treatment. MTZ-treated larvae showed severe pericardial edema, a reduction of the nephrin and podocin expression, proteinuria and an increased mortality rate at 8 dpf. After many tests we showed that glomeruli isolation using the sieving method and FACS were not efficient due to contaminations with other organs (sieving) and a loss of a large amount of cells per sample (FACS), respectively. Samples of the required quality for sequencing resulted only from the manual glomeruli isolation. Conclusion Here we describe methods to isolate fluorescent glomeruli from transgenic zebrafish larvae. For our studies, we used the NTZ/MTR kidney disease model in order to identify mRNAs and miRNAs regulated in response to glomerular damage. This technique will further allow to screen for healing drugs in high-throughput experiments.


2006 ◽  
Vol 85 (8) ◽  
pp. 761-765 ◽  
Author(s):  
F. Foschi ◽  
J. Izard ◽  
H. Sasaki ◽  
V. Sambri ◽  
C. Prati ◽  
...  

Treponema denticola is a consensus periodontal pathogen that has recently been associated with endodontic pathology. In this study, the effect of mono-infection of the dental pulp with T. denticola and with polymicrobial "red-complex" organisms (RC) ( Porphyromonas gingivalis, Tannerella forsythia, and T. denticola) in inducing disseminating infections in wild-type (WT) and severe-combined-immunodeficiency (SCID) mice was analyzed. After 21 days, a high incidence (5/10) of orofacial abscesses was observed in SCID mice mono-infected with T. denticola, whereas abscesses were rare in SCID mice infected with the red-complex organisms or in wild-type mice. Splenomegaly was present in all groups, but only mono-infected SCID mice had weight loss. T. denticola DNA was detected in the spleen, heart, and brain of mono-infected SCID mice and in the spleen from mono-infected wild-type mice, which also had more periapical bone resorption. The results indicate that T. denticola has high pathogenicity, including dissemination to distant organs, further substantiating its potential importance in oral and linked systemic conditions.


2020 ◽  
Author(s):  
Zhi Chen ◽  
Qing Zhou ◽  
Cong Liu ◽  
Yiping Zeng ◽  
Shaolong Yuan

Abstract Background: Diabetic nephropathy (DN) is a progressive disease, the main pathogeny of which is podocyte injury inducing glomerular filtration barrier and proteinuria. The occurrence and development of DN could be partly attributed to the reactive oxygen species (ROS) generated by mitochondria. However, researches on how mitochondrial dysfunction (MtD) ultimately causes DNA damage is poor.Methods: We generated streptozotocin (STZ)-induced diabetic mice with wild-type(C57BL/6J) or Klotho deficiency mice (KL+/-) and treated podocytes with high glucose (HG) to investigated the function of Klotho on HG-induced podocyte injury in vivo and in vitro.Results: The absence of Klotho aggravated diabetic phenotypes indicated by podocyte injury accompanied by elevated urea albumin creatinine ratio (UACR), creatinine, urea nitrogen. Then, Klotho deficiency could significantly aggravate DNA damage by increasing 8-OHdG and reducing OGG1. Finally, Klotho deficiency may promote MtD to promote 8-OHdG-induced podocyte injury.Conclusions: Klotho deficiency may promote diabetes-induced podocytic MtD and aggravate 8-OHdG-induced DNA damage by affecting OOG1.


2013 ◽  
Vol 305 (2) ◽  
pp. F182-F188 ◽  
Author(s):  
L. J. Hale ◽  
J. Hurcombe ◽  
A. Lay ◽  
B. Santamaría ◽  
A. M. Valverde ◽  
...  

Podocytes are critically important for maintaining the integrity of the glomerular filtration barrier and preventing albuminuria. Recently, it has become clear that to achieve this, they need to be insulin sensitive and produce an optimal amount of VEGF-A. In other tissues, insulin has been shown to regulate VEGF-A release, but this has not been previously examined in the podocyte. Using in vitro and in vivo approaches, in the present study, we now show that insulin regulates VEGF-A in the podocyte in both mice and humans via the insulin receptor (IR). Insulin directly increased VEGF-A mRNA levels and protein production in conditionally immortalized wild-type human and murine podocytes. Furthermore, when podocytes were rendered insulin resistant in vitro (using stable short hairpin RNA knockdown of the IR) or in vivo (using transgenic podocyte-specific IR knockout mice), podocyte VEGF-A production was impaired. Importantly, in vivo, this occurs before the development of any podocyte damage due to podocyte insulin resistance. Modulation of VEGF-A by insulin in the podocyte may be another important factor in the development of glomerular disease associated with conditions in which insulin signaling to the podocyte is deranged.


2020 ◽  
Vol 318 (5) ◽  
pp. F1177-F1187 ◽  
Author(s):  
Douglas K. Atchison ◽  
Christopher L. O’Connor ◽  
Rajasree Menon ◽  
Edgar A. Otto ◽  
Santhi K. Ganesh ◽  
...  

Loss-of-function mutations in phospholipase C-ε1 (PLCE1) have been detected in patients with nephrotic syndrome, but other family members with the same mutation were asymptomatic, suggesting additional stressor are required to cause the full phenotype. Consistent with these observations, we determined that global Plce1-deficient mice have histologically normal glomeruli and no albuminuria at baseline. Angiotensin II (ANG II) is known to induce glomerular damage in genetically susceptible individuals. Therefore, we tested whether ANG II enhances glomerular damage in Plce1-deficient mice. ANG II increased blood pressure equally in Plce1-deficient and wild-type littermates. Additionally, it led to 20-fold increased albuminuria and significantly more sclerotic glomeruli in Plce1-deficient mice compared with wild-type littermates. Furthermore, Plce1-deficient mice demonstrated diffuse mesangial expansion, podocyte loss, and focal podocyte foot process effacement. To determine whether these effects are mediated by hypertension and hyperfiltration, rather than directly through ANG II, we raised blood pressure to a similar level using DOCA + salt + uninephrectomy and norepinephrine. This caused a fivefold increase in albuminuria in Plce1-deficient mice and a significant increase in the number of sclerotic glomeruli. Consistent with previous findings in mice, we detected strong PLCE1 transcript expression in podocytes using single cell sequencing of human kidney tissue. In hemagglutinin-tagged Plce1 transgenic mice, Plce1 was detected in podocytes and also in glomerular arterioles using immunohistochemistry. Our data demonstrate that Plce1 deficiency in mice predisposes to glomerular damage secondary to hypertensive insults.


Author(s):  
A.S. Lossinsky ◽  
M.J. Song

Previous studies have suggested the usefulness of high-voltage electron microscopy (HVEM) for investigating blood-bram barrier (BBB) injury and the mechanism of inflammatory-cell (IC) attachment. These studies indicated that, in evaluating standard conventional thin sections, one might miss cellular attachment sites of ICs in their process of attaching to the luminal endothelial cell (EC) surface of cerebral blood vessels. Our current studies in animals subjected to autoimmune disease suggest that HVEM may be useful in localizing precise receptor sites involved in early IC attachment.Experimental autoimmune encephalomyelitis (EAE) was induced in mice and rats according to standard procedures. Tissue samples from cerebellum, thalamus or spinal cords were embedded in plastic following vascular perfusion with buffered aldehyde. Thick (0.5-0.7 μm) sections were cut on glass knives and collected on Formvar-coated slot grids stained with uranylacetate and lead citrate and examined with the AEI EM7 1.2 MV HVEM in Albany, NY at 1000 kV.


Sign in / Sign up

Export Citation Format

Share Document