scholarly journals Klotho Deficiency Aggravated Diabetes-induced Podocyte injury

2020 ◽  
Author(s):  
Zhi Chen ◽  
Qing Zhou ◽  
Cong Liu ◽  
Yiping Zeng ◽  
Shaolong Yuan

Abstract Background: Diabetic nephropathy (DN) is a progressive disease, the main pathogeny of which is podocyte injury inducing glomerular filtration barrier and proteinuria. The occurrence and development of DN could be partly attributed to the reactive oxygen species (ROS) generated by mitochondria. However, researches on how mitochondrial dysfunction (MtD) ultimately causes DNA damage is poor.Methods: We generated streptozotocin (STZ)-induced diabetic mice with wild-type(C57BL/6J) or Klotho deficiency mice (KL+/-) and treated podocytes with high glucose (HG) to investigated the function of Klotho on HG-induced podocyte injury in vivo and in vitro.Results: The absence of Klotho aggravated diabetic phenotypes indicated by podocyte injury accompanied by elevated urea albumin creatinine ratio (UACR), creatinine, urea nitrogen. Then, Klotho deficiency could significantly aggravate DNA damage by increasing 8-OHdG and reducing OGG1. Finally, Klotho deficiency may promote MtD to promote 8-OHdG-induced podocyte injury.Conclusions: Klotho deficiency may promote diabetes-induced podocytic MtD and aggravate 8-OHdG-induced DNA damage by affecting OOG1.

2013 ◽  
Vol 305 (2) ◽  
pp. F182-F188 ◽  
Author(s):  
L. J. Hale ◽  
J. Hurcombe ◽  
A. Lay ◽  
B. Santamaría ◽  
A. M. Valverde ◽  
...  

Podocytes are critically important for maintaining the integrity of the glomerular filtration barrier and preventing albuminuria. Recently, it has become clear that to achieve this, they need to be insulin sensitive and produce an optimal amount of VEGF-A. In other tissues, insulin has been shown to regulate VEGF-A release, but this has not been previously examined in the podocyte. Using in vitro and in vivo approaches, in the present study, we now show that insulin regulates VEGF-A in the podocyte in both mice and humans via the insulin receptor (IR). Insulin directly increased VEGF-A mRNA levels and protein production in conditionally immortalized wild-type human and murine podocytes. Furthermore, when podocytes were rendered insulin resistant in vitro (using stable short hairpin RNA knockdown of the IR) or in vivo (using transgenic podocyte-specific IR knockout mice), podocyte VEGF-A production was impaired. Importantly, in vivo, this occurs before the development of any podocyte damage due to podocyte insulin resistance. Modulation of VEGF-A by insulin in the podocyte may be another important factor in the development of glomerular disease associated with conditions in which insulin signaling to the podocyte is deranged.


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1631-1640 ◽  
Author(s):  
Janet R Donaldson ◽  
Charmain T Courcelle ◽  
Justin Courcelle

Abstract Ultraviolet light induces DNA lesions that block the progression of the replication machinery. Several models speculate that the resumption of replication following disruption by UV-induced DNA damage requires regression of the nascent DNA or migration of the replication machinery away from the blocking lesion to allow repair or bypass of the lesion to occur. Both RuvAB and RecG catalyze branch migration of three- and four-stranded DNA junctions in vitro and are proposed to catalyze fork regression in vivo. To examine this possibility, we characterized the recovery of DNA synthesis in ruvAB and recG mutants. We found that in the absence of either RecG or RuvAB, arrested replication forks are maintained and DNA synthesis is resumed with kinetics that are similar to those in wild-type cells. The data presented here indicate that RecG- or RuvAB-catalyzed fork regression is not essential for DNA synthesis to resume following arrest by UV-induced DNA damage in vivo.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Anna Iervolino ◽  
Tim Lange ◽  
Florian Siegerist ◽  
Maximilian Schindler ◽  
Giovambattista Capasso ◽  
...  

Abstract Background and Aims The zebrafish is a powerful animal model to study the glomerular morphology and the function of the permselectivity of the glomerular filtration barrier. Since zebrafish larvae develop quickly and can be bred to transparency, in vivo observation of these animals is possible. At 48 hours post fertilization (dpf), zebrafish develop a single filtering glomerulus which is attached to a pair of renal tubules. Like in mammals, the glomerular filtration barrier consists of a fenestrated endothelium, the glomerular basement membrane (GBM) and interdigitating podocyte foot processes bridged by a molecularly conserved slit diaphragm. By the use of genetically modified zebrafish strains with fluorescently labeled podocytes, it is possible to study alterations of the glomerulus during the development of renal disease directly in vivo and in vitro. As an injury model we used the nitroreductase/metronidazole (NTR/MTZ) zebrafish line to induce podocyte apoptosis and detachment from the GBM. Moreover, treatment of these larvae with MTZ induces glomerular injury that mimics focal segmental glomerulosclerosis (FSGS). The aim of our study was to establish a glomeruli isolation method which allows us to identify deregulation of miRNAs and mRNAs in the injured glomeruli by sequencing. Method The transgenic zebrafish strain Cherry (Tg(nphs2:Eco.nfsB-mCherry); mitfaw2/w2; mpv17a9/a9) which expresses the prokaryotic enzyme nitroreductase (NTR) fused to mCherry, a red fluorescent protein, under the control of the podocyte-specific podocin (nphs2) promoter in a transparent zebrafish strain, was used. The NTR/MTZ is a model of cell ablation to mimic podocyte injury. The prodrug MTZ (80 µM) is converted into a cytotoxin by NTR leading to a dose-dependent apoptosis exclusively in NTR-expressing podocytes. To induce podocyte injury, we treated Cherry larvae at 4 days post fertilization with MTZ (80 µM) freshly dissolved in 0.1% DMSO-E3 medium for 48 hours. Control larvae were treated with 0.1% DMSO-E3 medium. The treatment was stopped by a MTZ washout at 6 dpf. In order to perform the miRNA and mRNA sequencing on glomeruli isolated from MTZ-treated and control larvae we tried to establish a method to obtain total RNA samples of good quality. For this purpose, three different approaches were tested and validated: 1) Sieving method, 2) Fluorescence-Activated Cell Sorting method (FACS), and 3) manual isolation of glomeruli by using a micropipette. Results Zebrafish larvae developed a glomerular damage similar to FSGS after MTZ-treatment. MTZ-treated larvae showed severe pericardial edema, a reduction of the nephrin and podocin expression, proteinuria and an increased mortality rate at 8 dpf. After many tests we showed that glomeruli isolation using the sieving method and FACS were not efficient due to contaminations with other organs (sieving) and a loss of a large amount of cells per sample (FACS), respectively. Samples of the required quality for sequencing resulted only from the manual glomeruli isolation. Conclusion Here we describe methods to isolate fluorescent glomeruli from transgenic zebrafish larvae. For our studies, we used the NTZ/MTR kidney disease model in order to identify mRNAs and miRNAs regulated in response to glomerular damage. This technique will further allow to screen for healing drugs in high-throughput experiments.


2006 ◽  
Vol 74 (12) ◽  
pp. 6839-6846 ◽  
Author(s):  
Ge Wang ◽  
Yang Hong ◽  
Adriana Olczak ◽  
Susan E. Maier ◽  
Robert J. Maier

ABSTRACT Neutrophil-activating protein (NapA) has been well documented to play roles in human neutrophil recruitment and in stimulating host cell production of reactive oxygen intermediates (ROI). A separate role for NapA in combating oxidative stress within H. pylori was implied by studies of various H. pylori mutant strains. Here, physiological analysis of a napA strain was the approach used to assess the iron-sequestering and stress resistance roles of NapA, its role in preventing oxidative DNA damage, and its importance to mouse colonization. The napA strain was more sensitive to oxidative stress reagents and to oxygen, and it contained fourfold more intracellular free iron and more damaged DNA than the parent strain. Pure, iron-loaded NapA bound to DNA, but native NapA did not, presumably linking iron levels sensed by NapA to DNA damage protection. Despite its in vitro phenotype of sensitivity to oxidative stress, the napA strain showed normal (like that of the wild type) mouse colonization efficiency in the conventional in vivo assay. By use of a modified mouse inoculation protocol whereby nonviable H. pylori is first inoculated into mice, followed by (live) bacterial strain administration, an in vivo role for NapA in colonization efficiency could be demonstrated. NapA is the critical component responsible for inducing host-mediated ROI production, thus inhibiting colonization by the napA strain. An animal colonization experiment with a mixed-strain infection protocol further demonstrated that the napA strain has significantly decreased ability to survive when competing with the wild type. H. pylori NapA has unique and separate roles in gastric pathogenesis.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Teruo Kusano ◽  
Driss Ehirchiou ◽  
Tomohiro Matsumura ◽  
Veronique Chobaz ◽  
Sonia Nasi ◽  
...  

Abstract Xanthine oxidoreductase has been implicated in cancer. Nonetheless, the role played by its two convertible forms, xanthine dehydrogenase (XDH) and oxidase (XO) during tumorigenesis is not understood. Here we produce XDH-stable and XO-locked knock-in (ki) mice to address this question. After tumor transfer, XO ki mice show strongly increased tumor growth compared to wild type (WT) and XDH ki mice. Hematopoietic XO expression is responsible for this effect. After macrophage depletion, tumor growth is reduced. Adoptive transfer of XO-ki macrophages in WT mice increases tumor growth. In vitro, XO ki macrophages produce higher levels of reactive oxygen species (ROS) responsible for the increased Tregs observed in the tumors. Blocking ROS in vivo slows down tumor growth. Collectively, these results indicate that the balance of XO/XDH plays an important role in immune surveillance of tumor development. Strategies that inhibit the XO form specifically may be valuable in controlling cancer growth.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Anthony Cyr ◽  
Lauran Chambers ◽  
Paul K. Waltz ◽  
Sean P. Whelan ◽  
Lauryn Kohut ◽  
...  

Background. Organ injury and dysfunction in sepsis accounts for significant morbidity and mortality. Adaptive cellular responses in the setting of sepsis prevent injury and allow for organ recovery. We and others have shown that part of the adaptive response includes regulation of cellular respiration and maintenance of a healthy mitochondrial population. Herein, we hypothesized that endotoxin-induced changes in hepatocyte mitochondrial respiration and homeostasis are regulated by an inducible nitric oxide synthase/nitric oxide (iNOS/NO)-mitochondrial reactive oxygen species (mtROS) signaling axis, involving activation of the NRF2 signaling pathway. Methods. Wild-type (C57Bl/6) or iNos-/- male mice were subjected to intraperitoneal lipopolysaccharide (LPS) injections to simulate endotoxemia. Individual mice were randomized to treatment with NO-releasing agent DPTA-NONOate, mtROS scavenger MitoTEMPO, or vehicle controls. Other mice were treated with scramble or Nrf2-specific siRNA via tail vein injection. Primary murine hepatocytes were utilized for in vitro studies with or without LPS stimulation. Oxygen consumption rates were measured to establish mitochondrial respiratory parameters. Western blotting, confocal microscopy with immunocytochemistry, and rtPCR were performed for analysis of iNOS as well as markers of both autophagy and mitochondrial biogenesis. Results. LPS treatment inhibited aerobic respiration in vitro in wild-type but not iNos-/- cells. Experimental endotoxemia in vivo or in vitro induced iNOS protein and mtROS production. However, induction of mtROS was dependent on iNOS expression. Furthermore, LPS-induced hepatic autophagy/mitophagy and mitochondrial biogenesis were significantly attenuated in iNos-/- mice or cells with NO or mtROS scavenging. These responses were rescued in iNos-/- mice via delivery of NO both in vivo and in vitro. Conclusions. These data suggest that regulation of mitochondrial quality control following hepatocyte LPS exposure is dependent at least in part on a NO-mtROS signaling network. Further investigation to identify specific agents that modulate this process may facilitate the prevention of organ injury in sepsis.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 710-710
Author(s):  
Belinda Austen ◽  
Maria Podinovskaia ◽  
Claire Almond ◽  
Graham Fews ◽  
Anne Gardiner ◽  
...  

Abstract Deletions in chromosome 11q are an established prognostic marker in CLL. One copy of the ATM gene is deleted in these tumours, as detected by FISH analysis. However, it remains unclear whether the ATM gene is the main tumour suppressor gene that is accounting for the poor outcome in tumours with 11q deletions. We have recently reported that patients whose tumours have mutations in the ATM gene have an impaired overall and treatment free survival. In our large cohort of 155 patients, tumours with an ATM mutation only partly correlated with tumours with an 11q deletion. We have therefore investigated the relationship between 11q deletions and mutations in the ATM gene. Using the highly sensitive DHPLC method, we have screened the 60 ATM coding exons for mutations in a cohort of 46 tumours, all with a deletion of chromosome 11q. We have found ATM mutations in 19 tumours, indicating a prevalence of 41%. The ATM protein is vital in the cell’s response to DNA damage including that induced by chemotherapy. ATM acts upstream from p53 and defects in ATM function, like p53, lead to impaired DNA damage induced apoptosis. Furthermore, we have previously shown that loss of ATM function is associated with both in vitro and in vivo chemo-resistance. Therefore, we next assessed whether the status of the remaining ATM allele in the 11q deleted tumours affected the response to DNA damage. Firstly we induced DNA damage with irradiation and measured both the phosphorylation of ATM protein targets and the induction of p53 dependent transcription responses in representative samples. We found that 11q deleted tumours with a remaining wild type ATM allele had responses that were similar to those seen in tumours with two wild type ATM alleles. In contrast, 11q deleted tumours with a mutation in the remaining ATM allele had defective DNA damage induced responses. We then analysed the effects of in vitro treatment with Fludarabine. First we demonstrated that fludarabine induces ATM dependent phophosphorylation responses in CLL tumours. Then we analysed its effect in the two 11q deleted CLL subgroups. We showed defective phosphorylation responses to fludarabine in the tumours with a mutation in the second ATM allele, but normal responses in those with a second wild type ATM allele. In summary, we have shown that approximately 40% of CLL tumours with an 11q deletion have a mutation in their remaining ATM allele. Furthermore, we have demonstrated that the 11q deleted tumours appear to form two functional subgroups based on the presence of a mutation in the remaining ATM allele. In contrast to the subgroup with a wild type ATM allele, CLL tumours with a mutant ATM allele have defective in vitro responses to DNA damage with both irradiation and fludarabine. We expect that the functional differences between the two 11q deleted subsets will translate into differences in clinical outcome.


2011 ◽  
Vol 301 (4) ◽  
pp. L615-L622 ◽  
Author(s):  
Weisong Zhou ◽  
Dustin R. Dowell ◽  
Mark W. Geraci ◽  
Timothy S. Blackwell ◽  
Robert D. Collins ◽  
...  

The mortality rate for acute lung injury (ALI) is reported to be between 35–40%, and there are very few treatment strategies that improve the death rate from this condition. Previous studies have suggested that signaling through the prostaglandin (PG) I2 receptor may protect against bleomycin-induced ALI in mice. We found that mice that overexpress PGI synthase (PGIS) in the airway epithelium were significantly protected against bleomycin-induced mortality and had reduced parenchymal consolidation, apoptosis of lung tissue, and generation of F2-isoprostanes compared with littermate wild-type controls. In addition, we show for the first time in both in vivo and in vitro experiments that PGI2 induced the expression of NADP (H): quinoneoxidoreductase 1 (Nqo 1), an enzyme that prevents the generation of reactive oxygen species. PGI2 induction of Nqo 1 provides a possible novel mechanism by which this prostanoid protects against bleomycin-induced mortality and identifies a potential therapeutic target for human ALI.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Nils Hanke ◽  
Lynne Staggs ◽  
Patricia Schroder ◽  
Jennifer Litteral ◽  
Susanne Fleig ◽  
...  

Data for genes relevant to glomerular filtration barrier function or proteinuria is continually increasing in an era of microarrays, genome-wide association studies, and quantitative trait locus analysis. Researchers are limited by published literature searches to select the most relevant genes to investigate. High-throughput cell cultures and otherin vitrosystems ultimately need to demonstrate proof in anin vivomodel. Generating mammalian models for the genes of interest is costly and time intensive, and yields only a small number of test subjects. These models also have many pitfalls such as possible embryonic mortality and failure to generate phenotypes or generate nonkidney specific phenotypes. Here we describe anin vivozebrafish model as a simple vertebrate screening system to identify genes relevant to glomerular filtration barrier function. Using our technology, we are able to screen entirely novel genes in 4–6 weeks in hundreds of live test subjects at a fraction of the cost of a mammalian model. Our system produces consistent and reliable evidence for gene relevance in glomerular kidney disease; the results then provide merit for further analysis in mammalian models.


2018 ◽  
Vol 315 (3) ◽  
pp. F595-F606 ◽  
Author(s):  
Dawn J. Caster ◽  
Erik A. Korte ◽  
Min Tan ◽  
Michelle T. Barati ◽  
Shweta Tandon ◽  
...  

Acute glomerulonephritis is characterized by rapid glomerular neutrophil recruitment, proteinuria, and glomerular hypercellularity. The current study tested the hypothesis that the release of neutrophil granule contents plays a role in both the loss of filtration barrier leading to proteinuria and the increase in glomerular cells. Inhibition of neutrophil exocytosis with a peptide inhibitor prevented proteinuria and attenuated podocyte and endothelial cell injury but had no effect on glomerular hypercellularity in an experimental acute glomerulonephritis model in mice. Cultivation of podocytes with neutrophil granule contents disrupted cytoskeletal organization, an in vitro model for podocyte effacement and loss of filtration barrier. Activated, cultured podocytes released cytokines that stimulated neutrophil chemotaxis, primed respiratory burst activity, and stimulated neutrophil exocytosis. We conclude that crosstalk between podocytes and neutrophils contributes to disruption of the glomerular filtration barrier in acute glomerulonephritis. Neutrophil granule products induce podocyte injury but do not participate in the proliferative response of intrinsic glomerular cells.


Sign in / Sign up

Export Citation Format

Share Document