glomerular damage
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 30)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Philipp Tauber ◽  
Frederick Sinha ◽  
Raffaela S. Berger ◽  
Wolfram Gronwald ◽  
Katja Dettmer ◽  
...  

Large-scale clinical outcome studies demonstrated the efficacy of SGLT2 inhibitors in patients with type II diabetes. Besides their therapeutic efficacy in diabetes, significant renoprotection was observed in non-diabetic patients with chronic kidney disease (CKD), suggesting the existence of glucose-independent beneficial effects of SGLT2 inhibitors. However, the relevant mechanisms by which SGLT2 inhibition delays the progression of renal injury are still largely unknown and speculative. Previous studies showed that SGLT2 inhibitors reduce diabetic hyperfiltration, which is likely a key element in renoprotection. In line with this hypothesis, this study aimed to investigate the nephroprotective effects of the SGLT2 inhibitor empagliflozin (EMPA) in different mouse models with non-diabetic hyperfiltration and progressing CKD to identify the underlying diabetes-independent cellular mechanisms. Non-diabetic hyperfiltration was induced by unilateral nephrectomy (UNx). Since UNx alone does not result in renal damage, renal disease models with varying degrees of glomerular damage and albuminuria were generated by combining UNx with high NaCl diets ± deoxycorticosterone acetate (DOCA) in different mouse strains with and without genetic predisposition for glomerular injury. Renal parameters (GFR, albuminuria, urine volume) were monitored for 4–6 weeks. Application of EMPA via the drinking water resulted in sufficient EMPA plasma concentration and caused glucosuria, diuresis and in some models renal hypertrophy. EMPA had no effect on GFR in untreated wildtype animals, but significantly reduced hyperfiltration after UNx by 36%. In contrast, EMPA did not reduce UNx induced hyperfiltration in any of our kidney disease models, regardless of their degree of glomerular damage caused by DOCA/salt treatment. Consistent with the lack of reduction in glomerular hyperfiltration, EMPA-treated animals developed albuminuria and renal fibrosis to a similar extent as H2O control animals. Taken together, the data clearly indicate that blockade of SGLT2 has the potential to reduce non-diabetic hyperfiltration in otherwise untreated mice. However, no effects on hyperfiltration or progression of renal injury were observed in hypervolemic kidney disease models, suggesting that high salt intake and extracellular volume might attenuate the protective effects of SGLT2 blockers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yen-Fu Chen ◽  
Ao-Ho Hsieh ◽  
Lian-Chin Wang ◽  
Yun-Ju Huang ◽  
Yun-Chen Tsai ◽  
...  

AbstractThe association between the gut microbiota and the development of lupus is unclear. We investigated alterations in the gut microbiota after induction of lupus in a murine model using viral peptide of human cytomegalovirus (HCMV). Three treatment arms for the animals were prepared: intraperitoneal injection of HCMVpp65 peptide, adjuvant alone, and PBS injection. Feces were collected before and after lupus induction biweekly for 16S rRNA sequencing. HCMVpp65 peptide immunization induced lupus-like effects, with higher levels of anti-dsDNA antibodies, creatinine, proteinuria, and glomerular damage, compared with mice treated with nothing or adjuvant only. The Simpson diversity value was higher in mice injected with HCMVpp65 peptide, but there was no difference in ACE or Chao1 among the three groups. Statistical analysis of metagenomic profiles showed a higher abundance of various families (Saccharimonadaceae, Marinifiaceae, and Desulfovibrionaceae) and genera (Candidatus Saccharimonas, Roseburia, Odoribacter, and Desulfovibrio) in HCMVpp65 peptide-treated mice. Significant correlations between increased abundances of related genera (Candidatus Saccharimonas, Roseburia, Odoribacter, and Desulfovibrio) and HCMVpp65 peptide immunization-induced lupus-like effects were observed. This study provides insight into the changes in the gut microbiota after lupus onset in a murine model.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kenan Turgutalp ◽  
Egemen Cebeci ◽  
Aydin Turkmen ◽  
Ulver Derici ◽  
Nurhan Seyahi ◽  
...  

Abstract Background Galactose-deficient IgA1 (Gd-IgA1) has an increased tendency to form immunocomplexes with IgG in the serum, contributing to IgAN pathogenesis by accumulating in the glomerular mesangium. Several studies showed that glomerular IgG deposition in IgAN is an important cause of mesangial proliferation and glomerular damage. This study aims to determine the association of the positivity of IgG and the intensity of IgG staining with a poor renal prognosis. Methods A total of 943 IgAN patients were included in the study. Glomerular IgG staining negative and positive patients were compared using Oxford classification scores, histopathological evaluations, proteinuria, eGFR, albumin, blood pressures. IgG positive patients were classified as (+), (++), (+++) based on their staining intensity, and the association with the prognostic criteria was also evaluated. Results 81% (n = 764) of the patients were detected as IgG negative, while 19% (n = 179) were positive. Age, gender, body mass index, blood pressure, proteinuria, eGFR, uric acid values were similar in IgG positive and negative patients who underwent biopsy (p > 0.05). Intensity of glomerular IgG positivity was not found to be associated with diastolic and systolic blood pressure, urea, uric acid, age, eGFR, albumin, proteinuria (p > 0.05 for all, r = − 0.084, r = − 0.102, r = − 0.006, r = 0.062, r = 0.014, r = − 0.044, r = − 0.061, r = − 0.066, r = 0.150, respectively). There was no difference for histopathological findings between IgG (+), IgG (++), IgG (+++) groups (for all, p > 0.05). Conclusion Glomerular IgG negativity and positivity detected by routine IFM in IgAN patients is not associated with poor renal prognostic risk factors.


2021 ◽  
Author(s):  
Raffaella Labbadia ◽  
Francesca Diomedi Camassei ◽  
Luca Antonucci ◽  
Isabella Guzzo ◽  
Andrea Onetti Muda ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2464
Author(s):  
Nicole Mangold ◽  
Jeffrey Pippin ◽  
David Unnersjoe-Jess ◽  
Sybille Koehler ◽  
Stuart Shankland ◽  
...  

Cyclin-dependent kinase 5 (Cdk5) is expressed in terminally differentiated cells, where it drives development, morphogenesis, and survival. Temporal and spatial kinase activity is regulated by specific activators of Cdk5, dependent on the cell type and environmental factors. In the kidney, Cdk5 is exclusively expressed in terminally differentiated glomerular epithelial cells called podocytes. In glomerular disease, signaling mechanisms via Cdk5 have been addressed by single or combined conventional knockout of known specific activators of Cdk5. A protective, anti-apoptotic role has been ascribed to Cdk5 but not a developmental phenotype, as in terminally differentiated neurons. The effector kinase itself has never been addressed in animal models of glomerular disease. In the present study, conditional and inducible knockout models of Cdk5 were analyzed to investigate the role of Cdk5 in podocyte development and glomerular disease. While mice with podocyte-specific knockout of Cdk5 had no developmental defects and regular lifespan, loss of Cdk5 in podocytes increased susceptibility to glomerular damage in the nephrotoxic nephritis model. Glomerular damage was associated with reduced anti-apoptotic signals in Cdk5-deficient mice. In summary, Cdk5 acts primarily as master regulator of podocyte survival during glomerular disease and—in contrast to neurons—does not impact on glomerular development or maintenance.


2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Bernhard N. Bohnert ◽  
Irene Gonzalez-Menendez ◽  
Thomas Dörffel ◽  
Jonas C. Schneider ◽  
Mengyun Xiao ◽  
...  

ABSTRACT Susceptibility to doxorubicin-induced nephropathy (DIN), a toxic model for the induction of proteinuria in mice, is related to the single-nucleotide polymorphism (SNP) C6418T of the Prkdc gene encoding for the DNA-repair enzyme DNA-PKcs. In addition, plasminogen (Plg) has been reported to play a role in glomerular damage. Here, we investigated the interdependence of both factors for the development of DIN. Genotyping confirmed the SNP of the Prkdc gene in C57BL/6 (PrkdcC6418/C6418) and 129S1/SvImJ (PrkdcT6418/T6418) mice. Intercross of heterozygous 129SB6F1 mice led to 129SB6F2 hybrids with Mendelian inheritance of the SNP. After doxorubicin injection, only homozygous F2 mice with PrkdcT6418/T6418 developed proteinuria. Genetic deficiency of Plg (Plg−/−) in otherwise susceptible 129S1/SvImJ mice led to resistance to DIN. Immunohistochemistry revealed glomerular binding of Plg in Plg+/+ mice after doxorubicin injection involving histone H2B as Plg receptor. In doxorubicin-resistant C57BL/6 mice, Plg binding was absent. In conclusion, susceptibility to DIN in 129S1/SvImJ mice is determined by a hierarchical two-hit process requiring the C6418T SNP in the Prkdc gene and subsequent glomerular binding of Plg. This article has an associated First Person interview with the first author of the paper.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2332
Author(s):  
Matthias Gerhard Wagener ◽  
Carina Helmer ◽  
Patricia Kammeyer ◽  
Sven Kleinschmidt ◽  
Teresa Maria Punsmann ◽  
...  

Alpacas kept in Central Europe are often deficient in vitamin D3, which is supplemented orally or by injection by the owners or veterinarians. Vitamin D3 can be specified in two different units (IU and µg), which differ by a factor of 40. By mixing up these units, an overdosage can be induced. In this study, three alpaca crias were examined after vitamin D3 intoxication, with particular reference to kidney function. All three animals developed non-specific clinical alterations 1–2 weeks after a vitamin D3 overdose of approximately 40 times. Plasma of the animals revealed several alterations. The main findings were severe azotemia, hypercalcemia and hyperphosphatemia, 15 days after treatment. Kidney function analysis (endogenous creatinine clearance) in two of the crias revealed severe glomerular damage. All crias died despite intensive treatment within 23 days after vitamin D3 treatment. Necropsy revealed calcification in different organs, mainly the kidneys, lungs and liver. Since nine other crias in the same group were treated with comparable doses of vitamin D3 and no clinical signs were observed in these animals, it is concluded that individual animals show different levels of sensitivity to vitamin D3.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2014
Author(s):  
Désirée Tampe ◽  
Laura Schridde ◽  
Peter Korsten ◽  
Philipp Ströbel ◽  
Michael Zeisberg ◽  
...  

Kidney fibrosis is a common manifestation and hallmark of a wide variety of chronic kidney disease (CKD) that appears in different morphological patterns, suggesting distinct pathogenic causes. Broad macroscopically visible scars are the sequelae of severe focal injury and complete parenchymal destruction, reflecting a wound healing response as a consequence of infarction. In the kidney, chronic glomerular injury leads to atrophy of the corresponding tubule, degeneration of this specific nephron, and finally interstitial fibrosis/tubular atrophy (IF/TA). Compared to this glomerulus-induced focal replacement scar, diffuse fibrosis independent of tubular atrophy appears to be a different pathogenic process. Kidney fibrosis appears to develop in a compartment-specific manner, but whether focal and diffuse fibrosis has distinct characteristics associated with other glomerular or tubulointerstitial lesions remains elusive. In the present study, we aimed to analyze renal fibrotic patterns related to renal lesions, which directly contribute to renal fibrogenesis, to unravel fibrotic patterns and manifestations upon damage to distinct renal compartments. Patterns of kidney fibrosis were analyzed in experimental models of CKD and various renal pathologies in correlation with histopathological and ultrastructural findings. After the induction of isolated crescentic glomerulonephritis (GN) in nephrotoxic serum-nephritis (NTN), chronic glomerular damage resulted in predominantly focal fibrosis adjacent to atrophic tubules. By contrast, using unilateral ureteral obstruction (UUO) as a model of primary injury to the tubulointerstitial compartment revealed diffuse fibrosis as the predominant pattern of chronic lesions. Finally, folic acid-induced nephropathy (FAN) as a model of primary tubular injury with consecutive tubular atrophy independent of chronic glomerular damage equally induced predominant focal IF/TA. By analyzing several renal pathologies, our data also suggest that focal and diffuse fibrosis appear to contribute as chronic lesions in the majority of human renal disease, mainly being present in antineutrophil cytoplasmic antibody (ANCA)-associated GN, lupus nephritis, and IgA nephropathy (IgAN). Focal IF/TA correlated with glomerular damage and irreversible injury to nephrons, whereas diffuse fibrosis in ANCA GN was associated explicitly with interstitial inflammation independent of glomerular damage and nephron loss. Ultrastructural analysis of focal IF/TA versus diffuse fibrosis revealed distinct matrix compositions, further supported by different collagen signatures in transcriptome datasets. With regard to long-term renal outcome, only the extent of focal IF/TA correlated with the development of end-stage kidney disease (ESKD) in ANCA GN. In contrast, diffuse kidney fibrosis did not associate with the long-term renal outcome. In conclusion, we here provide evidence that a focal pattern of kidney fibrosis seems to be associated with nephron loss and replacement scarring. In contrast, a diffuse pattern of kidney fibrosis appears to result from primary interstitial inflammation and injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Feng Wang ◽  
Yuying Dai ◽  
Meng Huang ◽  
Chenchen Zhang ◽  
Liping Huang ◽  
...  

Trichloroethylene (TCE) is a serious health hazard for workers with daily exposure, causing occupational medicamentosa-like dermatitis due to TCE (OMDT) and glomerular damage. Recent studies suggest that mTORC1 signaling is activated in various glomerular disorders; however, the role of mTORC1 signaling in TCE-induced glomerular damage remains to be explored. In the present study, 6 OMDT patients were enrolled and a TCE-sensitized mouse model was established to investigate molecular mechanisms underlying the glomerular damage associated with OMDT. Glomerular damage was assessed by levels of urine nephrin, H&E staining, and renal function test. Ultrastructural change of podocyte was investigated by transmission electron microscopy. The podocyte-related molecules including nephrin, α-actinin-4, and integrin β1 were visualized by immunofluorescence. The activation of mTORC1 signaling was confirmed by Western blot. Glomerular apoptosis was examined by the TUNEL test and Western blotting. Expression and location of cathepsin L (CTSL) were assessed by RT-PCR and immunofluorescence. Our results showed that TCE sensitization caused damage to glomerular structural integrity and also increased the activation of mTORC1 signaling, which was accompanied by podocyte loss, hypertrophy, and glomerular apoptosis. Importantly, we also found that over-expressed CTSL was mainly located in podocyte and CTSL inhibition could partially block the activation of mTORC1 signaling. Thus, our findings suggested a novel mechanism whereby hyperactive mTOR signaling contributes to TCE sensitization–induced and immune-mediated glomerular damage via CTSL activation.


Author(s):  
Linda Bellucci ◽  
Giovanni Montini ◽  
Federica Collino ◽  
Benedetta Bussolati

Abstract Background: Dynamic cultures, characterized by continuous fluid reperfusion, elicit physiological responses from cultured cells. Mesenchymal stem cell-derived EVs (MSC-EVs) has been proposed as a novel approach in treating several renal diseases, including acute glomerular damage, by using traditional two-dimensional cell cultures and in vivo models. We here aimed to use a fluidic three-dimensional (3D) glomerular model to study the EV dynamics within the glomerular structure under perfusion. Methods: To this end, we set up a 3D glomerular model culturing human glomerular endothelial cells and podocytes inside a bioreactor on the opposite sides of a porous membrane coated with type IV collagen. The bioreactor was connected to a circuit that allowed fluid passage at the rate of 80 µl/min. To mimic glomerular damage, the system was subjected to doxorubicin administration in the presence of therapeutic MSC-EVs. Results: The integrity of the glomerular basal membrane in the 3D glomerulus was assessed by a permeability assay, demonstrating that the co-culture could limit the passage of albumin through the filtration barrier. In dynamic conditions, serum EVs engineered with cel-miR-39 passed through the glomerular barrier and transferred the exogenous microRNA to podocyte cell lines. Doxorubicin treatment increased podocyte apoptosis, whereas MSC-EV within the endothelial circuit protected podocytes from damage, decreasing cell death and albumin permeability. Conclusion: Using an innovative millifluidic model, able to mimic the human glomerular barrier, we were able to trace the EV passage and therapeutic effect in dynamic conditions.


Sign in / Sign up

Export Citation Format

Share Document