scholarly journals Analytical Model of Wave Loads and Motion Responses for a Floating Breakwater System with Attached Dual Porous Side Walls

2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Weiliang Qiao ◽  
Keh-Han Wang ◽  
Wenqi Duan ◽  
Yuqing Sun

A set of two-dimensional analytical solutions considering the effects of diffraction and radiation are presented in this study to investigate the hydrodynamic interaction between an incident linear wave and a proposed floating breakwater system consisting of a rectangular-shaped body and two attached vertical side porous walls in an infinite fluid domain with finite water depth. The Matched Eigenfunction Expansion Method (MEEM) for multiple fluid domains is applied to derive theoretically the velocity potentials and associated unknown coefficients for wave diffraction and body motion induced radiation in each subdomain. Also, the exciting forces, as well as the added mass and damping coefficients for the floating breakwater system under the surge, heave, and pitching motions, are formulated. The displacements of breakwater motions are determined by solving the equation of motion. As a verification of the analytical model, the present solutions of the limiting cases in terms of exciting forces, moments, added masses, and damping coefficients are found to be well matched with other published numerical results. Additionally, the hydrodynamic performances and the dynamic responses in terms of Response Amplitude Operators (RAOs) of the proposed floating breakwater system are evaluated versus various dimensionless variables, such as wavelength and porous-effect parameter. The results show that the attached porous walls with selected porous properties are observed to have the advantages of reducing wave impacts on the floating breakwater system and at the same time its dynamic responses are also noticeably improved.

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Qinghe Fang ◽  
Anxin Guo

Focused wave is a practical laboratory method for reproducing extreme waves that cause catastrophic damage to marine and coastal structures. This paper presents a simple and efficient analytical method for predicting the hydrodynamic pressure and wave forces acting on a partially immersed box when subjected to a focused wave group attack. The boundary value issue of the physical problem is first investigated to derive an analytical formula based on potential flow theory and the matching eigenfunction method. Thereafter, the test data from a hydrodynamic experiment is used to verify the accuracy of the proposed analytical model. Using the validated analytical model, a parametric analysis is conducted to gain insight into the effects of the structural configuration and wave properties on the pressure and wave forces. It is observed that the hydrodynamic pressure on the offshore side plate, horizontal wave force, and moment are notably influenced by the structure breadth and draft. A focused wave with a lower peak frequency and higher focused amplitude is found to exert greater wave forces on the partially immersed box. The paper shows the value of linear wave theory for wave loads prediction even for focused waves although with some limitations.


Author(s):  
Yasunori Nihei ◽  
Weiguang Bao ◽  
Takeshi Kinoshita

In the present study, non-linear wave loads such as the wave-drift force, wave-drift damping and wave-drift added mass, acting on the body is considered based on the potential theory. To investigate non-linear wave loads, consistent perturbation expansion by means of two small parameters, i.e. the incident wave slope and the low frequency body motion, is performed on a moving frame (body-fixed) coordinate system. To avoid complicated free surface integrals as much as possible, new approach for the higher order potential in the interaction problem of low frequency motion and waves is suggested in the present work. Instead of integrals, derivative operators are defined to obtain special solutions efficiently.


Author(s):  
Luca Cavallaro ◽  
Claudio Iuppa ◽  
Rosaria Ester Musumeci ◽  
Pietro Scandura ◽  
Enrico Foti

The wave loads on a navigation lock gate provided with an opening in the ballast tank are analyzed using a mathematical model based on the linear wave theory and the numerical integration of the Navier-Stokes Equation. The analysis focuses on the evaluation of the non-linear effect influence on the vertical load on the gate. It is shown that the numerical and analytical models agree on the identification of the value of the wave number at which the maximum value of the dimensionless vertical force on the gate is detected. However the analytical model overestimates the peak value of the vertical load with respect to the CFD simulation. To fill this gap, in this paper an easy to use procedure is developed which allows to correct the results of the analytical model.


Author(s):  
C-M Chen ◽  
R-F Fung

The dynamic equations of a micro-positioning Scott—Russell (SR) mechanism associated with two flexible hinges and an offset are developed to calculate output responses. Both rigid and flexible hinges are considered to explore the results. The main features in the kinematics of the SR mechanism are its displacement amplification and straight-line motion, which are widely needed in practical industries. The manufacturing inaccuracy of the SR mechanism definitely causes geometric offsets of flexure hinges, and affects displacement amplification and straight-line output motion. Analytical models based on kinematics and Hamilton's principle are derived to explore the variation of linearity ratio, magnification factor, and deviation factor due to various offsets and link lengths. From numerical simulations for the SR mechanism with various offsets of flexible hinges in the conditions of different link lengths, it is found that offsets of flexure hinges obviously affect the amplifying factor and linearity ratio, and appear to dominate the changes of magnification factors. Moreover, an analytical model is also used to predict magnification factors due to various offsets. Finally, some conclusions concerning the effects of offset on the performance of the SR mechanism are drawn.


2002 ◽  
Vol 124 (2) ◽  
pp. 104-109 ◽  
Author(s):  
Subrata K. Chakrabarti

A versatile and efficient numerical analysis is developed to compute the responses of a moored floating system composed of multiple floating structures. Structures such as tankers, semisubmersibles, FPSOs, SPARs, TLPs, and SPMs connected by mooring lines, connectors or fenders may be analyzed individually or collectively including multiple interaction. The analysis is carried out in the time domain assuming rigid body motion for the structures, and the solution is generated by a forward integration scheme. The analysis includes the nonlinearities in the excitation, damping, and restoring terms encountered in a typical mooring system configuration. It also allows for instabilities in the tower oscillation as well as slack mooring lines. Certain simplifications in the analysis have been made, which are discussed. The exciting forces in the analysis are wind, current, and waves (including a steady and an oscillating drift force), which are not necessarily collinear. The waves can be single frequency or composed of multiple frequency components. For regular waves either linear, stretched linear or fifth order theory may be used. The irregular wave may be included as a given spectral model (e.g., PM or JONSWAP). The vessels are free to respond to the exciting forces in six degrees of freedom—surge, sway, heave, roll, pitch, and yaw. The tower, when present, is free to respond in two degrees of freedom—oscillation and precession. The loads in the mooring lines are determined from prescribed tension-strain tables for the lines. Rigid mooring arms can be analyzed by allowing for compression in the load-strain table. Fenders may be input similarly through load compression tables. In order to establish the stability and accuracy of the solution, comparison of the results with linearized frequency domain analysis was made. The analysis is verified by several different model test results for different structure configurations in regular and random seas. Some of the interesting aspects of nonlinear system are shown with a few examples.


1989 ◽  
Vol 33 (02) ◽  
pp. 84-92
Author(s):  
G. X. Wu ◽  
R. Eatock Taylor

The problem of wave radiation and diffraction by submerged spheroids is analyzed using linearized three-dimensional potential-flow theory. The solution is obtained by expanding the velocity potential into a series of Legendre functions in a spheroidal coordinate system. Tabulated and graphical results are provided for added mass and damping coefficients of various spheroids undergoing motions in six degrees of freedom. Graphs are also provided for exciting forces and moments corresponding to a range of incoming wave angles.


Author(s):  
Majid A. Bhinder ◽  
Clive G. Mingham ◽  
Derek M. Causon ◽  
Mohammad T. Rahmati ◽  
George A. Aggidis ◽  
...  

This paper presents the findings from using several commercial computational fluid dynamics codes in a joint numerical and experimental project to simulate WRASPA, a new wave energy converter (WEC) device. A series of fully 3D non-linear simulations of WRASPA are presented. Three commercial codes STAR-CCM, CFX and FLOW-3D are considered for simulating the WRASPA device and final results are presented based on the use of Flow-3D. Results are validated by comparison to experimental data obtained from small scale tank tests undertaken at Lancaster University (LU). The primary aim of the project is to use numerical simulation to optimize the collector geometry for power production over a range of likely wave climates. A secondary aim is to evaluate the ability of commercial codes to simulate rigid body motion in linear and non-linear wave climates in order to choose the optimal code with respect to compute speed and ease of problem setup. Issues relating to the ability of a code in terms of numerical dissipation of waves, wave absorption, wave breaking, grid generation and moving bodies will all be discussed. The findings of this paper serve as a basis for an informed choice of commercial package for such simulations. However the capability of these commercial codes is increasing with every new release.


Author(s):  
Chao Tian ◽  
Xinyun Ni ◽  
Jun Ding ◽  
Peng Yang ◽  
Yousheng Wu

In order to explore the fishery, oil and gas, and tourism resources in the ocean, Very Large Floating Structures (VLFS) can be deployed near islands and reefs as a logistic base with various functions such as a floating harbor, accommodation, fishery processing, oil and gas exploration, environment surveillance, airplane landing and taking off, etc. However, in addition to the complicated hydroelastic coupling effects between the hydrodynamic loads and structural dynamic responses, when tackling the hydroelastic problems of floating structures deployed near islands and reefs, several other environmental effects and numerical techniques should be taken into account: 1) The influences of the non-uniform incident waves (multi-directions, different wave frequencies); 2) Complex seabed profile and its impact on the incident waves; 3) Nonlinear second order wave exciting forces in the complex mooring system, shallow water and coral reef geological conditions; 4) Parallel computing technology and fast solving methods for the large scale linear equations, accounting for the influence of dramatic increase of number of meshes to the computation efforts and efficiency. In the present paper the theoretical investigation on the hydroelastic responses of VLFS deployed near islands and reefs has been presented. In addition, based on the pulsating source Green function, the high performance parallel fast computing techniques and other numerical methods, in solving large scale linear equations, have been introduced in the three-dimensional hydroelastic analysis package THAFTS. The motions, wave loads, distortions and stresses can be calculated using the present theoretical model and the results can be used in the design and safety assessment of VLFS.


Author(s):  
Shinji Katsura ◽  
Hiroo Okada ◽  
Koji Masaoka ◽  
Takashi Tsubogo ◽  
Kiko Shimada

This paper deals with the elastic response behavior of marine tunnel structures with tension legs in regular and irregular waves. Firstly, a simplified estimation method for dynamic responses under regular wave conditions is analytically presemed using a simple beam on an elastic foundation. Then, in order to demonstrate the validity of above results, experimental studies are carried out for a marine tunnel structure model with tension legs under wave-induced loads. Next, a simplified estimation method is presented for the elastic response behavior under irregular wave conditions by using above analytical results and combining irregular sea wave spectra. Then, the limit state failure mode of the main structure is presented for estimating the reliability level for cracking failure under extreme wave loads. Finally, the applicability of the methods is investigated through numerical examples carried out for a 1,000m-class marine tunnel structure with tension legs under some irregular sea state conditions. And characteristics of the short-term responses and reliability levels for the cracking failure are numerically shown.


Sign in / Sign up

Export Citation Format

Share Document