scholarly journals Field Observation and Theoretical Study on an Existing Tunnel Underpassed by New Twin Tunnels

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Qiongfang Zhang

The methodology of the existing displacement control is illustrated taking the shield of twin tunnels of Line 4 underpassing the upline tunnel of existing metro Line 1, for example. Vertical, horizontal, and convergence displacement of the existing tunnel is monitored and analyzed in detail in this paper. Shield parameters are predefined and adjusted based on the feedback of the displacement of Line 1. Short-term displacement of the existing tunnel is greatly influenced by the relative distance between the shield face and the existing tunnel and shield parameters. The shapes of horizontal and convergence displacement curves are similar. Line 1 is reinforced, and a new analysis method is firstly proposed for the design of reinforcement of the existing tunnel which is verified by the analytical methods derived from prior studies. The results show that the change of reinforcement stiffness has a greater effect on the normalized bending moment and the normalized shear force of the existing tunnel, and reinforcement of 25 rings on either side of the intersection point is the best choice in this case. The proposed model can be widely applicable for reinforcement design and safety check of the existing tunnel.

2013 ◽  
Vol 4 (4) ◽  
pp. 133-144 ◽  
Author(s):  
Šarūnas Kelpša ◽  
Mindaugas Augonis

When the various reinforced concrete structures are designed according to EC2 and STR, the difference of calculation results, is quite significant. In this article the calculations of shear strength of bending reinforced concrete elements are investigated according to these standards. The comparison of such calculations is also significant in the sense that the shear strength calculations are carried out according to different principles. The STR regulations are based on work of the shear reinforcement crossing the oblique section and the compressed concrete at the end of the section. In this case, at the supporting zone, the external bending moment and shear force should be in equilibrium with the internal forces in reinforcement and compressed concrete, i.e., the cross section must be checked not only from the external shear force, but also from bending moment. In EC2 standard, the shear strengths are calculated according to simplified truss model, which consists of the tension shear reinforcement bars and compressed concrete struts. The bending moment is not estimated. After calculation analysis of these two methods the relationships between shear strength and various element parameters are presented. The elements reinforced with stirrups and bends are investigated additionally because in EC2 this case is not presented. According to EC2 the simplified truss model solution depends on the compression strut angle value θ, which is limited in certain interval. Since the component of tension reinforcement bar directly depends on the angle θ and the component of compression strut depends on it conversely, then exists some value θ when the both components are equal. So the angle θ can be found when such two components will be equated. However, such calculation of angle θ became complicated if the load is uniform, because then the components of tension bar are estimated not in support cross section but in cross section that are displaced by distance d. So, the cube equation should be solved. For simplification of such solution the graphical method to find out the angle θ and the shear strength are presented. In these graphics the intersection point of two components (shear reinforcement and concrete) curves describes the shear strength of element. Santrauka Straipsnyje apžvelgtos ir palygintos STR ir EC2 įstrižojo pjūvio stiprumo skaičiavimo metodikos stačiakampio skerspjūvio elementams. Normatyve neapibrėžtas EC2 metodikos santvaros modelio spyrių posvyrio kampo skaičiavimas, lemiantis galutinį įstrižojo pjūvio stiprumą. Straipsnyje pateikiamos kampo θ apskaičiavimo lygtys, atsižvelgiant į apkrovimo pobūdį. Norint supaprastinti pateiktų lygčių sprendimą siūlomas grafoanalitinis sprendimo būdas, pritaikant papildomus koeficientus. EC2 neapibrėžia skaičiavimo išraiškų, kai skersinis armavimas yra apkabos ir atlankos. Minėtos išraiškos suformuluotos ir pateiktos straipsnyje. Nustačius EC2 metodikos dėsningumus siūlomas alternatyvus apytikslis skaičiavimo būdas atlankomis ir apkabomis armuotiems elementams. Straipsnyje apžvelgtos abi – STR ir EC2 – metodikos, išskiriant pagrindinius skirtumus ir dėsningumus.


2021 ◽  
Vol 6 (1) ◽  
pp. 1-10
Author(s):  
I Wayan Wirya Aristyana ◽  
Muhammad Fauzan

The type of soil at the location of the hotel building is a type of medium land (D). The applications used in this study are ETABS V16.1 and AutoCAD. Based on the PUSKIM website, the Ss and S1 Bogor City were 0.881 and 0.356, respectively. Based on the results of the analysis of the application ETABS V16.1 obtained fewer reinforcement design results than the existing reinforcement. The maximum nominal moment of the beam is 508.3 kNm while the ultimate moment is 498.4 kNm. The maximum nominal shear force of the beam is 565.9 kN while the ultimate shear force is 538.4 kN. The maximum nominal moment of the column is 1488.5 kNm while the maximum ultimate moment is 1478 kNm. The maximum nominal axial force of the column is 6291 kN while the maximum ultimate axial force is 6287 kN. The maximum nominal bending moment of the floor plate is 41.3 kNm while the maximum ultimate moment is 39.9 kNm. The maximum nominal shear force of the floor plate is 234.7 kN while the maximum ultimate shear force is 228.9 kN. The nominal shear force of shear wall  is 8238.5 kN while the ultimate shear force is 8194.7 kN. Based on the internal forces, the building that has been built is in accordance with the plan so that it is safe to withstand earthquake loads.  


2012 ◽  
Vol 166-169 ◽  
pp. 487-492
Author(s):  
Qiong Fen Wang ◽  
Ji Yao ◽  
Hui Min Wang ◽  
Chun Li Guo

The FEM model of asymmetric twin tower building with large bases was established with FE-program ANSYS. The influences of steel rope on the structural dynamic characteristics were analyzed. The x-direction level seismic excitation were input with the help of time-domain analysis method, the influence of steel rope on the top’s acceleration ,the bottom shear force and bending moment of the structure were researched. Some useful results were obtained.


Aerospace ◽  
2003 ◽  
Author(s):  
Hui-Ru Shih ◽  
Jonathan Watkin ◽  
H. S. Tzou

Photostrictive material is emerging as a new actuation medium. In contrast to traditional transducers, photostrictive material can produce actuation strains as a result of irradiation from high-intensity light, having neither electric lead wires nor electric circuits. In this paper, a static analytical model is derived for a flexural beam with surface bonded photostrictive optical actuators. Analysis of the proposed model is carried out by considering the induced force and bending moment produced on the beam by the patched actuator. Analytical solutions of the transverse deflection, induced by the photostrictive actuators, are derived for different boundary conditions. Those solutions are explicity expressed in terms of the geometry and position of the actuators patched on the beam. Finite element verification of the proposed model is presented. This paper presents the analytical predictions on optimal placement of photostrictive actuators for displacement control of beam structures. The objective is to determine the optimum photostrictive actuator locations to minimize the maximum beam deflection.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3204
Author(s):  
Michał Sabat ◽  
Dariusz Baczyński

Transmission, distribution, and micro-grid system operators are struggling with the increasing number of renewables and the changing nature of energy demand. This necessitates the use of prognostic methods based on ever shorter time series. This study depicted an attempt to develop an appropriate method by introducing a novel forecasting model based on the idea to use the Pareto fronts as a tool to select data in the forecasting process. The proposed model was implemented to forecast short-term electric energy demand in Poland using historical hourly demand values from Polish TSO. The study rather intended on implementing the range of different approaches—scenarios of Pareto fronts usage than on a complex evaluation of the obtained results. However, performance of proposed models was compared with a few benchmark forecasting models, including naïve approach, SARIMAX, kNN, and regression. For two scenarios, it has outperformed all other models by minimum 7.7%.


Author(s):  
Azim Heydari ◽  
Meysam Majidi Nezhad ◽  
Davide Astiaso Garcia ◽  
Farshid Keynia ◽  
Livio De Santoli

AbstractAir pollution monitoring is constantly increasing, giving more and more attention to its consequences on human health. Since Nitrogen dioxide (NO2) and sulfur dioxide (SO2) are the major pollutants, various models have been developed on predicting their potential damages. Nevertheless, providing precise predictions is almost impossible. In this study, a new hybrid intelligent model based on long short-term memory (LSTM) and multi-verse optimization algorithm (MVO) has been developed to predict and analysis the air pollution obtained from Combined Cycle Power Plants. In the proposed model, long short-term memory model is a forecaster engine to predict the amount of produced NO2 and SO2 by the Combined Cycle Power Plant, where the MVO algorithm is used to optimize the LSTM parameters in order to achieve a lower forecasting error. In addition, in order to evaluate the proposed model performance, the model has been applied using real data from a Combined Cycle Power Plant in Kerman, Iran. The datasets include wind speed, air temperature, NO2, and SO2 for five months (May–September 2019) with a time step of 3-h. In addition, the model has been tested based on two different types of input parameters: type (1) includes wind speed, air temperature, and different lagged values of the output variables (NO2 and SO2); type (2) includes just lagged values of the output variables (NO2 and SO2). The obtained results show that the proposed model has higher accuracy than other combined forecasting benchmark models (ENN-PSO, ENN-MVO, and LSTM-PSO) considering different network input variables. Graphic abstract


2021 ◽  
pp. 1-10
Author(s):  
Hye-Jeong Song ◽  
Tak-Sung Heo ◽  
Jong-Dae Kim ◽  
Chan-Young Park ◽  
Yu-Seop Kim

Sentence similarity evaluation is a significant task used in machine translation, classification, and information extraction in the field of natural language processing. When two sentences are given, an accurate judgment should be made whether the meaning of the sentences is equivalent even if the words and contexts of the sentences are different. To this end, existing studies have measured the similarity of sentences by focusing on the analysis of words, morphemes, and letters. To measure sentence similarity, this study uses Sent2Vec, a sentence embedding, as well as morpheme word embedding. Vectors representing words are input to the 1-dimension convolutional neural network (1D-CNN) with various sizes of kernels and bidirectional long short-term memory (Bi-LSTM). Self-attention is applied to the features transformed through Bi-LSTM. Subsequently, vectors undergoing 1D-CNN and self-attention are converted through global max pooling and global average pooling to extract specific values, respectively. The vectors generated through the above process are concatenated to the vector generated through Sent2Vec and are represented as a single vector. The vector is input to softmax layer, and finally, the similarity between the two sentences is determined. The proposed model can improve the accuracy by up to 5.42% point compared with the conventional sentence similarity estimation models.


2011 ◽  
Vol 110-116 ◽  
pp. 3422-3428 ◽  
Author(s):  
Behzad Abdi ◽  
Hamid Mozafari ◽  
Ayob Amran ◽  
Roya Kohandel

This work devoted to an ellipsoidal head of pressure vessel under internal pressure load. The analysis is aimed at finding an optimum weight of ellipsoidal head of pressure vessel due to maximum working pressure that ensures its full charge with stresses by using imperialist competitive algorithm and genetic algorithm. In head of pressure vessel the region of its joint with the cylindrical shell is loaded with shear force and bending moments. The load causes high bending stresses in the region of the joint. Therefore, imperialist competitive algorithm was used here to find the optimum shape of a head with minimum weight and maximum working pressure which the shear force and the bending moment moved toward zero. Two different size ellipsoidal head examples are selected and studied. The imperialist competitive algorithm results are compared with the genetic algorithm results.


Sign in / Sign up

Export Citation Format

Share Document