scholarly journals Analisis dan Desain Struktur Atas Hotel 10 Lantai di Kabupaten Bogor terhadap Beban Gempa

2021 ◽  
Vol 6 (1) ◽  
pp. 1-10
Author(s):  
I Wayan Wirya Aristyana ◽  
Muhammad Fauzan

The type of soil at the location of the hotel building is a type of medium land (D). The applications used in this study are ETABS V16.1 and AutoCAD. Based on the PUSKIM website, the Ss and S1 Bogor City were 0.881 and 0.356, respectively. Based on the results of the analysis of the application ETABS V16.1 obtained fewer reinforcement design results than the existing reinforcement. The maximum nominal moment of the beam is 508.3 kNm while the ultimate moment is 498.4 kNm. The maximum nominal shear force of the beam is 565.9 kN while the ultimate shear force is 538.4 kN. The maximum nominal moment of the column is 1488.5 kNm while the maximum ultimate moment is 1478 kNm. The maximum nominal axial force of the column is 6291 kN while the maximum ultimate axial force is 6287 kN. The maximum nominal bending moment of the floor plate is 41.3 kNm while the maximum ultimate moment is 39.9 kNm. The maximum nominal shear force of the floor plate is 234.7 kN while the maximum ultimate shear force is 228.9 kN. The nominal shear force of shear wall  is 8238.5 kN while the ultimate shear force is 8194.7 kN. Based on the internal forces, the building that has been built is in accordance with the plan so that it is safe to withstand earthquake loads.  

SPE Journal ◽  
2014 ◽  
Vol 20 (02) ◽  
pp. 405-416 ◽  
Author(s):  
Wenjun Huang ◽  
Deli Gao ◽  
Fengwu Liu

Summary A new buckling equation in horizontal wells is derived on the basis of the general bending and twisting theory of rods. The boundary conditions of a long tubular string are divided into two categories: the sum of the virtual work of bending moment and shear force at the ends of tubular strings is equal to zero, and the sum of the virtual work of bending moment and shear force at the ends is not equal to zero. Buckling solutions under different boundary conditions are obtained by solving the new buckling model. For the boundary conditions of the first category, the buckling solutions are identical with previous results. For the boundary conditions of the second category, the buckling solutions are different from the results under the boundary conditions of the first category. The results indicate that buckling behaviors depend on both the axial force and the boundary conditions. Compared with previous results, buckling solutions of the new model provide a more comprehensive description of tubular-buckling behaviors.


2017 ◽  
Vol 17 (03) ◽  
pp. 1750041 ◽  
Author(s):  
Bo Di ◽  
Xueyi Fu

In this paper, the influence of foundation stiffness on the seismic behavior of shear wall-frame systems was investigated. First, a basic differential equation was established to account for the interaction between the foundation and superstructure. By solving the equation, the influence of foundation stiffness on the lateral stiffness, inter-story drift, and internal force distribution of the superstructure at the elastic stage was elucidated. Subsequently, the concept and method for determining the range of foundation stiffness suitable for shear wall-frame systems were proposed. By taking a 12-story shear wall-frame structure built on a shallow foundation as an example, a parametric study was performed for various frame-to-wall relative stiffness ratios and foundation stiffnesses. The effect of shallow foundation stiffness on the base shear distribution and energy dissipation of the superstructure was clarified, with results compared with those of the fixed-base model. The analysis results indicated that the degeneration of foundation stiffness due to earthquake damages will result in significant redistribution of internal forces, namely, the internal forces of the walls decrease, while those of the frames increase. In particular, the shear-force and bending moment of the bottom frame columns rise drastically, which may greatly reduce the safety margin and should be considered in practical design.


2015 ◽  
Vol 744-746 ◽  
pp. 1033-1036
Author(s):  
Zi Chang Shangguan ◽  
Shou Ju Li ◽  
Li Juan Cao ◽  
Hao Li

In order to simulate moment distribution on linings of tunnel excavated by shield, FEM-based procedure is proposed. According to geological data of tunnel excavated by shield, FEM model is performed, and the moment, axial force and shear force distributions on linings are computed. The maximum moment on segments decreases while Poisson’s ratio of soil materials touching to segments increases. The moment value and distribution vary with Young’s modulus of soil materials. The maximum positive moment on linings is approximately equal to the maximum negative moment.


2016 ◽  
Vol 9 (3) ◽  
pp. 306-356
Author(s):  
A. Puel ◽  
D. D. Loriggio

ABSTRACT This paper studies the modeling of symmetric and asymmetric flat slabs, presenting alternatives to the problem of singularity encountered when the slab is modeled considering columns as local support. A model that includes the integrated slab x column analysis was proposed, distributing the column reactions under the slab. The procedure used transforms the bending moment and column axial force in a distributed load, which will be applied to the slab in the opposite direction of gravitational loads. Thus, the bending moment diagram gets smooth in the punching region with a considerable reduction of values, being very little sensible to the variation of used mesh. About the column, it was not seen any significant difference in the axial force, although the same haven't occurred with the bending moments results. The final part of the work uses geoprocessing programs for a three-dimensional view of bending moments, allowing a new comprehension the behavior of these internal forces in the entire slab.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Qiongfang Zhang

The methodology of the existing displacement control is illustrated taking the shield of twin tunnels of Line 4 underpassing the upline tunnel of existing metro Line 1, for example. Vertical, horizontal, and convergence displacement of the existing tunnel is monitored and analyzed in detail in this paper. Shield parameters are predefined and adjusted based on the feedback of the displacement of Line 1. Short-term displacement of the existing tunnel is greatly influenced by the relative distance between the shield face and the existing tunnel and shield parameters. The shapes of horizontal and convergence displacement curves are similar. Line 1 is reinforced, and a new analysis method is firstly proposed for the design of reinforcement of the existing tunnel which is verified by the analytical methods derived from prior studies. The results show that the change of reinforcement stiffness has a greater effect on the normalized bending moment and the normalized shear force of the existing tunnel, and reinforcement of 25 rings on either side of the intersection point is the best choice in this case. The proposed model can be widely applicable for reinforcement design and safety check of the existing tunnel.


2011 ◽  
Vol 94-96 ◽  
pp. 830-833 ◽  
Author(s):  
Dong Mei Zhao ◽  
Ying Xu Zhao ◽  
Yan Xia Ye

In this paper, the effect of the non-uniformity settlement of ground foundation on the upper frame structure is studied. It takes a four-story space frame structure with two spans as an example. The different pedestals are installed at the joint of column footing, which respectively form the fixed supported model and the elastic supported model. Basin shaped settlement is applied in each model. The result shows that the beams are principally suffered with the bending moment and the columns principally suffered with axial force, shear force and bending moment, and that the elastic support model has certain economy.


Author(s):  
Oleksandr Semko ◽  
◽  
Аnton Hasenkо ◽  
Aleksey Fenkо ◽  
J Godwin Emmanuel B. Arch. ◽  
...  

The article describes the influence of overall dimensions, namely the ratio of lifting height to the span of the triangular reinforced concrete arch of the coating, to the change in internal forces in its cross sections. The change of axial force in steel rods and reinforced concrete half-panels and the change of bending moment in reinforced concrete half-panels depending on the angle of inclination of roof are determined. According to the obtained values of the effort, the required diameters of the working reinforcement and its cost are determined.


Sign in / Sign up

Export Citation Format

Share Document