scholarly journals Performance Analysis of Backhaul-Aware User Association in 5G Ultradense Heterogeneous Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Junpeng Yu ◽  
Hongtao Zhang ◽  
Yuqing Chen ◽  
Yaduan Ruan

In 5G ultradense heterogeneous networks, wireless backhaul, as one of the important base station (BS) resources that affect user services, has attracted more and more attention. However, a user would access to the BS which is the nearest for the user based on the conventional user association scheme, which constrains the network performance improvement due to the limited backhaul capacity. In this paper, using backhaul-aware user association scheme, semiclosed expressions of network performance metrics are derived in ultradense heterogeneous networks, including coverage probability, rate coverage, and network delay. Specifically, all possible access and backhaul links within the user connectable range of BSs and anchor base stations (A-BSs) are considered to minimize the analytical results of outage probability. The outage for the user occurs only when the access link or backhaul link which forms the link combination with the optimal performance is failure. Furthermore, the theoretical analysis and numerical results evaluate the impact of the fraction of A-BSs and the BS-to-user density ratio on network performance metric to seek for a more reasonable deployment of BSs in the practical scenario. The simulation results show that the coverage probability of backhaul-aware user association scheme is improved significantly by about 2× compared to that of the conventional user association scheme when backhaul is constrained.

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1495
Author(s):  
Noha Hassan ◽  
Xavier Fernando

Fifth-generation (5G) wireless networks and beyond will be heterogeneous in nature, with a mixture of macro and micro radio cells. In this scenario where high power macro base stations (MBS) coexist with low power micro base stations (mBS), it is challenging to ensure optimal usage of radio resources to serve users with a multitude of quality of service (QoS) requirements. Typical signal to interference and noise ratio (SINR)-based user allocation protocols unfairly assign more users to the high power MBS, starving mBS. There have been many attempts in the literature to forcefully assign users to mBS with limited success. In this paper, we take a different approach using second order statistics of user data, which is a better indicator of traffic fluctuations. We propose a new algorithm for user association to the appropriate base station (BS) by utilizing the standard deviation of the overall network load. This is done through an exhaustive search of the best user equipment (UE)–BS combinations that provide a global minimum to the standard deviation. This would correspond to the optimum number of UEs assigned to every BS, either macro or micro. We have also derived new expressions for coverage probability and network energy efficiency for analytical performance evaluation. Simulation results prove the validity of our proposed methods to balance the network load, improve data rate, average energy efficiency, and coverage probability with superior performance compared with other algorithms.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jiaqi Lei ◽  
Hongbin Chen ◽  
Feng Zhao

The energy efficiency (EE) is a key metric of ultradense heterogeneous cellular networks (HCNs). Earlier works on the EE analysis of ultradense HCNs by using the stochastic geometry tool only focused on the impact of the base station density ratio and ignored the function of different tiers. In this paper, a two-tier ultradense HCN with small-cell base stations (SBSs) and user equipments (UEs) densely deployed in a traditional macrocell network is considered. Firstly, the performance of the ultradense HCN in terms of the association probability, average link spectral efficiency (SE), average downlink throughput, and average EE is theoretically analyzed by using the stochastic geometry tool. Then, the problem of maximizing the average EE while meeting minimum requirements of the average link SE and average downlink throughput experienced by UEs in macrocell and small-cell tiers is formulated. As it is difficult to obtain the explicit expression of average EE, impacts of the SBS density ratio and signal-to-interference-plus-noise ratio (SINR) threshold on the network performance are investigated through numerical simulations. Simulation results validate the accuracy of theoretical results and demonstrate that the maximum value of average EE can be achieved by optimizing the SBS density ratio and the SINR threshold.


Author(s):  
Farah Akif ◽  
Aqdas Malik ◽  
Ijaz Qureshi ◽  
Ayesha Abassi

With the advancement in wireless communication technology, the ease of accessibility and increasing coverage area is a major challenge for service providers. Network densification through Small cell Base Stations (SBS) integration in Heterogeneous Networks (HetNets) promises to improve network performance for cell edge users. Since providing wired backhaul for small cells is not cost effective or practical, the third-Generation Partnership Project (3GPP) has developed architecture for self-backhaul known as Integrated Access and Backhaul (IAB) for Fifth Generation (5G). This allows for Main Base Station (MBS) resources to be shared between SBS and MBS users. However, fair and efficient division of MBS resources remains a problem to be addressed. We develop a novel transmit antenna selection/partitioning technique for taking advantage of IAB 5G standard for Massive Multiple Input Multiple Output (MIMO) HetNets. Transmit antenna resources are divided among access for MBS users and for providing wireless backhaul for SBS. We develop A Genetic Algorithm (GA) based Transmit Antenna Selection (TAS) scheme and compare with random selection, eigenvalue-based selection and bandwidth portioning. Our analysis show that GA based TAS has the ability to converge to an optimum antenna subset providing better rate coverage. Furthermore, we also signify the performance of TAS based partitioning over bandwidth partitioning and also show user association can also be controlled using number of antennas reserved for access or backhaul.


2021 ◽  
Author(s):  
Noha Hassan

Heterogeneous Networks (HetNets) have gained the attraction of the communication industry recently, due to their promising ability to enhance the performance of future broadband Fifth Generation (5G) networks and are integral parts of 5G systems. They can be viewed in multi-dimensional space where, each slice represents a unique tier that has its own Base Station (BS)s and User Equipment (UE)s. Different tiers cooperate with each other for their mutual benefit. Data can be interactively exchanged among the tiers, and UEs have the flexibility to switch between the tiers. The cells in such a heterogeneous cellular networks have variable sizes, shapes, and coverage regions. However, in HetNets with ultra dense BSs, the distance between them gets very small and, they suffer from very high levels of mutual interference. To improve the performance of HetNets, we have done multiple contributions in this dissertation. First, we have developed analytical derivations for optimizing pilot sequence length which is a very crucial factor in acquiring the Channel State Information (CSI) and the channel estimation process in general. Poisson Point Process (PPP) has been widely used to allocate BSs among various tiers so far. However, BS locations obtained using PPP approach may not be optimum to reduce interference. Therefore, in this dissertation, BSs locations are optimized to reduce the interference and improve the coverage and received signal power. Also, we have derived expressions for static UEs coverage probability and network energy efficiency in HetNets. A proper UE association algorithm for HetNets is a great challenge. The classic max-Signal to Interference and Noise Ratio (SINR) or max-received signal strength (RSS) user association algorithms are inappropriate solutions for HetNets as UEs in this context will tend to connect to the Macro BS, which is the one with the highest signal power. A severe load imbalance and significant inefficiency arises and impacts the performance. The aforementioned algorithms tend to associate UEs to BSs with the best received signal power or signal quality. In HetNets, usually Macro BSs are the ones transmitting the strongest signals; hence most UEs tend to associate with the Macro BS leaving Micro BSs with less load. Also, the conventional max-SINR and max-RSS algorithms do not provide adequate results in multi-tier systems. We suggest two centralized algorithms, LSTD and RTLB, for an even UE association to provide fair load distribution. However RTLB outperforms LSTD in real time scenarios as it easily and quickly adapts to rapid network changes. Furthermore, we consider the mobility of nodes. We derive coverage probability for moving UEs considering both handover and no handover scenarios. Proposed algorithms are fast enough to associate the moving users to different Micro and Macro BSs appropriately in real time. Our algorithms are proved to be feasible and provide a path towards attainable future communication systems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252421
Author(s):  
Reben Kurda

Effective management of radio resources and service quality assurance are two of the essential aspects to furnish high-quality service in Long Term Evolution (LTE) networks. Despite the base station involving several ingenious scheduling schemes for resource allocation, the intended outcome might be influenced by the interference, especially in heterogeneous scenarios, where many kinds of small cells can be deployed under the coverage of macrocell area. To develop the network of small cells, it is essential to take into account such boundaries, in particular, mobility, interference and resources scheduling a strategy which assist getting a higher spectral efficiency in anticipate small cells. Another challenge with small cellular network deployment is further analyzing the impact of power control techniques in the uplink direction for the network performance. With that being said, this article investigates the problem of interference in LTE-advanced heterogeneous networks. The proposed scheme allows mitigation inter-cell interference through fractional self-powered control performed at each femtocell user. This study analyzes a scheme with optimum power value that provides a compromise between the served uplink signal within unwanted interference plus noise ratio to enhance spectral efficiency in terms of throughput. In particular, the maximum transmit power for user equipment in uplink direction should be reviewed for small cells as a major contributor to the interference. The simulation results showed that the proposed fractional power control approach can outperform the traditional power control employed as a full compensation mode in small cell uplinks.


2021 ◽  
Author(s):  
Noha Hassan

Heterogeneous Networks (HetNets) have gained the attraction of the communication industry recently, due to their promising ability to enhance the performance of future broadband Fifth Generation (5G) networks and are integral parts of 5G systems. They can be viewed in multi-dimensional space where, each slice represents a unique tier that has its own Base Station (BS)s and User Equipment (UE)s. Different tiers cooperate with each other for their mutual benefit. Data can be interactively exchanged among the tiers, and UEs have the flexibility to switch between the tiers. The cells in such a heterogeneous cellular networks have variable sizes, shapes, and coverage regions. However, in HetNets with ultra dense BSs, the distance between them gets very small and, they suffer from very high levels of mutual interference. To improve the performance of HetNets, we have done multiple contributions in this dissertation. First, we have developed analytical derivations for optimizing pilot sequence length which is a very crucial factor in acquiring the Channel State Information (CSI) and the channel estimation process in general. Poisson Point Process (PPP) has been widely used to allocate BSs among various tiers so far. However, BS locations obtained using PPP approach may not be optimum to reduce interference. Therefore, in this dissertation, BSs locations are optimized to reduce the interference and improve the coverage and received signal power. Also, we have derived expressions for static UEs coverage probability and network energy efficiency in HetNets. A proper UE association algorithm for HetNets is a great challenge. The classic max-Signal to Interference and Noise Ratio (SINR) or max-received signal strength (RSS) user association algorithms are inappropriate solutions for HetNets as UEs in this context will tend to connect to the Macro BS, which is the one with the highest signal power. A severe load imbalance and significant inefficiency arises and impacts the performance. The aforementioned algorithms tend to associate UEs to BSs with the best received signal power or signal quality. In HetNets, usually Macro BSs are the ones transmitting the strongest signals; hence most UEs tend to associate with the Macro BS leaving Micro BSs with less load. Also, the conventional max-SINR and max-RSS algorithms do not provide adequate results in multi-tier systems. We suggest two centralized algorithms, LSTD and RTLB, for an even UE association to provide fair load distribution. However RTLB outperforms LSTD in real time scenarios as it easily and quickly adapts to rapid network changes. Furthermore, we consider the mobility of nodes. We derive coverage probability for moving UEs considering both handover and no handover scenarios. Proposed algorithms are fast enough to associate the moving users to different Micro and Macro BSs appropriately in real time. Our algorithms are proved to be feasible and provide a path towards attainable future communication systems.


Author(s):  
Noor Nateq Alfaisaly ◽  
Suhad Qasim Naeem ◽  
Azhar Hussein Neama

Worldwide interoperability microwave access (WiMAX) is an 802.16 wireless standard that delivers high speed, provides a data rate of 100 Mbps and a coverage area of 50 km. Voice over internet protocol (VoIP) is flexible and offers low-cost telephony for clients over IP. However, there are still many challenges that must be addressed to provide a stable and good quality voice connection over the internet. The performance of various parameters such as multipath channel model and bandwidth over the Star trajectoryWiMAX network were evaluated under a scenario consisting of four cells. Each cell contains one mobile and one base station. Network performance metrics such as throughput and MOS were used to evaluate the best performance of VoIP codecs. Performance was analyzed via OPNET program14.5. The result use of multipath channel model (disable) was better than using the model (ITU pedestrian A). The value of the throughput at 15 dB was approximately 1600 packet/sec, and at -1 dB was its value 1300 packet/se. According to data, the Multipath channel model of the disable type the value of the MOS was better than the ITU Pedestrian A type.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5307 ◽  
Author(s):  
Shuang Zhang ◽  
Guixia Kang

To support a vast number of devices with less energy consumption, we propose a new user association and power control scheme for machine to machine enabled heterogeneous networks with non-orthogonal multiple access (NOMA), where a mobile user (MU) acting as a machine-type communication gateway can decode and forward both the information of machine-type communication devices and its own data to the base station (BS) directly. MU association and power control are jointly considered in the formulated as optimization problem for energy efficiency (EE) maximization under the constraints of minimum data rate requirements of MUs. A many-to-one MU association matching algorithm is firstly proposed based on the theory of matching game. By taking swap matching operations among MUs, BSs, and sub-channels, the original problem can be solved by dealing with the EE maximization for each sub-channel. Then, two power control algorithms are proposed, where the tools of sequential optimization, fractional programming, and exhaustive search have been employed. Simulation results are provided to demonstrate the optimality properties of our algorithms under different parameter settings.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jing Gao ◽  
Qing Ren ◽  
Pei Shang Gu ◽  
Xin Song

The widespread application of wireless mobile services and requirements of ubiquitous access have resulted in drastic growth of the mobile traffic and huge energy consumption in ultradense networks (UDNs). Therefore, energy-efficient design is very important and is becoming an inevitable trend. To improve the energy efficiency (EE) of UDNs, we present a joint optimization method considering user association and small-cell base station (SBS) on/off strategies in UDNs. The problem is formulated as a nonconvex nonlinear programming problem and is then decomposed into two subproblems: user association and SBS on/off strategies. In the user association strategy, users associate with base stations (BSs) according to their movement speeds and utility function values, under the constraints of the signal-to-interference ratio (SINR) and load balancing. In particular, taking care of user mobility, users are associated if their speed exceeds a certain threshold. The macrocell base station (MBS) considers user mobility, which prevents frequent switching between users and SBSs. In the SBS on/off strategy, SBSs are turned off according to their loads and the amount of time required for mobile users to arrive at a given SBS to further improve network energy efficiency. By turning off SBSs, negative impacts on user associations can be reduced. The simulation results show that relative to conventional algorithms, the proposed scheme achieves energy efficiency performance enhancements.


2015 ◽  
Vol 24 (08) ◽  
pp. 1550117 ◽  
Author(s):  
S. Balaji ◽  
R. Santhakumar ◽  
P. S. Mallick

This paper analyzes the cell edge mobile user performance in the downlink cellular system. We develop frame-work for coverage probability and spectral efficiency. In particular, we analyzed the performance of multi-antenna mobile users under multi-antenna base stations (BSs). The expressions of coverage probability and spectral efficiency are derived for cell edge user using stochastic geometry. We investigate how much the performance of cell edge user is improved when distances connecting BSs and cell edge users are modeled with cell edge null probability distribution. The probability of coverage and spectral efficiency is studied using zero-forcing beam-forming and the performance metrics are compared between coordinated scheduling (CS) and without coordinated scheduling (w/o CS). The interesting observation from our results is that the edge user coverage and rate is closely approaching towards the inner cell typical mobile user's rate and coverage, and the performance is verified with relative probability of coverage gain analysis.


Sign in / Sign up

Export Citation Format

Share Document