scholarly journals Energy-Aware Key Exchange for Securing Implantable Medical Devices

2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Wonsuk Choi ◽  
Youngkyung Lee ◽  
Duhyeong Lee ◽  
Hyoseung Kim ◽  
Jin Hyung Park ◽  
...  

Implantable medical devices (IMDs) continuously monitor the condition of a patient and directly apply treatments if considered necessary. Because IMDs are highly effective for patients who frequently visit hospitals (e.g., because of chronic illnesses such as diabetes and heart disease), their use is increasing significantly. However, related security concerns have also come to the fore. It has been demonstrated that IMDs can be hacked—the IMD power can be turned off remotely, and abnormally large doses of drugs can be injected into the body. Thus, IMDs may ultimately threaten a patient’s life. In this paper, we propose an energy-aware key exchange protocol for securing IMDs. We utilize synchronous interpulse intervals (IPIs) as the source of a secret key. These IPIs enable IMDs to agree upon a secret key with an external programmer in an authenticated and transparent manner without any key material being exposed either before distribution or during initialization. We demonstrate that it is difficult for adversaries to guess the keys established using our method. In addition, we show that the reduced communication overhead of our method enhances battery life, making the proposed approach more energy-efficient than previous methods.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanjun Ryu ◽  
Hyun-moon Park ◽  
Moo-Kang Kim ◽  
Bosung Kim ◽  
Hyoun Seok Myoung ◽  
...  

AbstractSelf-powered implantable devices have the potential to extend device operation time inside the body and reduce the necessity for high-risk repeated surgery. Without the technological innovation of in vivo energy harvesters driven by biomechanical energy, energy harvesters are insufficient and inconvenient to power titanium-packaged implantable medical devices. Here, we report on a commercial coin battery-sized high-performance inertia-driven triboelectric nanogenerator (I-TENG) based on body motion and gravity. We demonstrate that the enclosed five-stacked I-TENG converts mechanical energy into electricity at 4.9 μW/cm3 (root-mean-square output). In a preclinical test, we show that the device successfully harvests energy using real-time output voltage data monitored via Bluetooth and demonstrate the ability to charge a lithium-ion battery. Furthermore, we successfully integrate a cardiac pacemaker with the I-TENG, and confirm the ventricle pacing and sensing operation mode of the self-rechargeable cardiac pacemaker system. This proof-of-concept device may lead to the development of new self-rechargeable implantable medical devices.


2019 ◽  
Vol 12 (05) ◽  
pp. 1950075
Author(s):  
Indivar Gupta ◽  
Atul Pandey ◽  
Manish Kant Dubey

The first published solution to key distribution problem is due to Diffie–Hellman, which allows two parties that have never communicated earlier, to jointly establish a shared secret key over an insecure channel. In this paper, we propose a new key exchange protocol in a non-commutative semigroup over group ring whose security relies on the hardness of Factorization with Discrete Logarithm Problem (FDLP). We have also provided its security and complexity analysis. We then propose a ElGamal cryptosystem based on FDLP using the group of invertible matrices over group rings.


2012 ◽  
Vol 40 (4) ◽  
pp. 716-750 ◽  
Author(s):  
Leili Fatehi ◽  
Susan M. Wolf ◽  
Jeffrey McCullough ◽  
Ralph Hall ◽  
Frances Lawrenz ◽  
...  

Nanomedicine is yielding new and improved treatments and diagnostics for a range of diseases and disorders. Nanomedicine applications incorporate materials and components with nanoscale dimensions (often defined as 1-100 nm, but sometimes defined to include dimensions up to 1000 nm, as discussed further below) where novel physiochemical properties emerge as a result of size-dependent phenomena and high surface-to-mass ratio. Nanotherapeutics and in vivo nanodiagnostics are a subset of nanomedicine products that enter the human body. These include drugs, biological products (biologics), implantable medical devices, and combination products that are designed to function in the body in ways unachievable at larger scales. Nanotherapeutics and in vivo nanodiagnostics incorporate materials that are engineered at the nanoscale to express novel properties that are medicinally useful. These nanomedicine applications can also contain nanomaterials that are biologically active, producing interactions that depend on biological triggers. Examples include nanoscale formulations of insoluble drugs to improve bioavailability and pharmacokinetics, drugs encapsulated in hollow nanoparticles with the ability to target and cross cellular and tissue membranes (including the bloodbrain barrier) and to release their payload at a specific time or location, imaging agents that demonstrate novel optical properties to aid in locating micrometastases, and antimicrobial and drug-eluting components or coatings of implantable medical devices such as stents.


2010 ◽  
Vol 638-642 ◽  
pp. 754-759
Author(s):  
Lawrence E. Eiselstein ◽  
Robert D. Caligiuri

Implantable medical devices must be able to withstand the corrosive environment of the human body for 10 or more years without adverse consequences. Most reported research and development has been on developing materials and devices that are biocompatible and resistant to corrosion-fatigue, pitting, and crevice corrosion. However, little has been directly reported regarding implantable materials with respect to the rate at which they generate soluble ions in-vivo. Most of the biocompatibility studies have been done by examining animal implants and cell cultures rather than examining the rate at which these materials leach ions into the body. This paper will discuss what is currently known about the rate at which common implant materials (such as stainless steels, cobalt-chromium alloys, and nitinol) elute ions under in vitro conditions, what the limitations are of such data, and how this data can be used in medical device development.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xuefei Cao ◽  
Lanjun Dang ◽  
Yingzi Luan ◽  
Wei You

In this paper, we propose a certificateless noninteractive key exchange protocol. No message exchange is required in the protocol, and this feature will facilitate the applications where the communication overhead matters, for example, the communications between the satellites and the earth. The public key certificate is removed as well as the key escrow problem using the certificateless public key cryptosystem. The security of the protocol rests on the bilinear Diffie–Hellman problem, and it could be proved in the random oracle model. Compared with previous protocols, the new protocol reduces the running time by at least 33.0%.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1853
Author(s):  
José Ignacio Escribano Pablos ◽  
María Isabel González Vasco ◽  
Misael Enrique Marriaga ◽  
Ángel Luis Pérez del Pozo

A group authenticated key exchange (GAKE) protocol allows a set of parties belonging to a certain designated group to agree upon a common secret key through an insecure communication network. In the last few years, many new cryptographic tools have been specifically designed to thwart attacks from adversaries which may have access to (different kinds of) quantum computation resources. However, few constructions for group key exchange have been put forward. Here, we propose a four-round GAKE which can be proven secure under widely accepted assumptions in the Quantum Random Oracle Model. Specifically, we integrate several primitives from the so-called Kyber suite of post-quantum tools in a (slightly modified) compiler from Abdalla et al. (TCC 2007). More precisely, taking as a starting point an IND-CPA encryption scheme from the Kyber portfolio, we derive, using results from Hövelmanns et al. (PKC 2020), a two-party key exchange protocol and an IND-CCA encryption scheme and prove them fit as building blocks for our compiled construction. The resulting GAKE protocol is secure under the Module-LWE assumption, and furthermore achieves authentication without the use of (expensive) post-quantum signatures.


2020 ◽  
Vol 10 (8) ◽  
pp. 2923 ◽  
Author(s):  
Jean-Pierre Alcaraz ◽  
Gauthier Menassol ◽  
Géraldine Penven ◽  
Jacques Thélu ◽  
Sarra El Ichi ◽  
...  

We discuss the perspectives of designing implantable medical devices that have the criterion of being symbiotic. Our starting point was whether the implanted device is intended to have any two-way (“duplex”) communication of energy or materials with the body. Such duplex communication extends the existing concepts of a biomaterial and biocompatibility to include the notion that it is important to consider the intended functional use of the implanted medical device. This demands a biomimetic approach to design functional symbiotic implantable medical devices that can be more efficient in mimicking what is happening at the molecular and cellular levels to create stable interfaces that allow for the unfettered exchanges of molecules between an implanted device and a body. Such a duplex level of communication is considered to be a necessary characteristic of symbiotic implanted medical devices that are designed to function for long periods of time inside the body to restore and assist the function of the body. We illustrate these perspectives with experience gained from implanting functional enzymatic biofuel cells.


Sign in / Sign up

Export Citation Format

Share Document