scholarly journals Exploiting Impacts of Intercell Interference on SWIPT-Assisted Non-Orthogonal Multiple Access

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Thanh-Luan Nguyen ◽  
Dinh-Thuan Do

In this paper, we examine the influence of intercell interference (ICI) on the system outage behavior with important derived results in the proposed model of simultaneous wireless information and power transfer (SWIPT) together with the nonorthogonal multiple access (NOMA) using the amplify-and-forward protocol. We derive the closed-form expression of coverage probability for two NOMA users as a function of the signal-to-interference-plus-noise ratio (SINR). To fully take into account the effect of ICI, we adopt more practical parameters to evaluate the optimal power splitting coefficient regarding energy harvesting system performance analysis. Furthermore, to consider a more practical scenario, based on the fact that the number of ICI sources can affect wireless powered relays, we investigate the average outage probability by considering impacts of the reasonable number of participating ICI.

Author(s):  
Dinh-Thuan Do

In this paper, we consider one-way  relay with energy harvesting system based on power beacon (PB), in which the relay node harvests transmitted power from the PB station to forward signals to destination. We also analyse the relay network model with amplify-and-forward (AF) protocol for information cooperation and Power Splitting-based Relaying (PSR) protocol for power transfer. In particular, the outage probability and optimal energy harvesting (EH) power splitting fraction of novel scheme in are presented. We obtain analytical closed-form expression of  optimal energy harvesting (EH) power splitting fraction to minimize the outage probability of system. Using numerical and analytical simulations, the performances of different cases are presented and discussed.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1525
Author(s):  
Yeonggyu Shim ◽  
Wonjae Shin

This paper considers simultaneous wireless information and power transfer (SWIPT) systems in the two-user Gaussian multiple access channel (G-MAC). In SWIPT systems, for a transmit signal each transmitter consists of an information-carrying signal and energy-carrying signal. By controlling a different set of the power for the information transmission and power for the energy transmission under a total power constraint, the information sum-rate and energy transmission rate can be achieved. As the information carrying-to-transmit power ratio at transmitters and the information sum-rate increases, however, the energy transmission rate decreases. In other words, there is a fundamental trade-off between the information sum-rate and the energy transmission rate according to the power-splitting ratio at each transmitter. Motivated by this, this paper proposes an optimal power-splitting scheme that maximizes the energy transmission rate subject to a minimum sum-rate constraint. In particular, a closed-form expression of the power-splitting coefficient is presented for the two-user G-MAC under a minimum sum-rate constraint. Numerical results show that the energy rate of the proposed optimal power-splitting scheme is greater than that of the fixed power-splitting scheme.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 186
Author(s):  
Dinh-Thuan Do ◽  
Anh-Tu Le ◽  
Rupak Kharel ◽  
Adão Silva ◽  
Mohammad Abu Shattal

The authors wish to make the following erratum to this paper [...]


2021 ◽  
Author(s):  
Suyue Li ◽  
Junhuai Liu ◽  
Anhong Wang

Abstract Non-orthogonal multiple access (NOMA) collaborative communication is extremely beneficial to the users with poor channel conditions. It is essential to examine the performance of different NOMA users with superior cooperative forwarding protocols. This paper addresses the user cooperative NOMA system where one strong user (U2) assists one weak user (U1) to forward messages, and investigates the outage performance of both users with hybrid decode-and-amplify forwarding (HDAF) protocol. First, we derive the outage probability of U2 and U1 with HDAF. Secondly, we provide the closed-form expression for outage probability of U1 with the incremental hybrid decode-and-amplify forward (IHDAF) protocol at U2, which can further enhance the outage performance of U1 compared with HDAF. Moreover, we also present the system throughput expression and provide deep analysis on the effect of different forwarding protocols. Numerical results and Monte Carlo simulations jointly confirm the correctness of all the analytic derivations. In addition to saving the energy consumption of U2, IHDAF can make U1 achieve superior outage performance to HDAF. However, the system throughput almost overlap for both schemes given a threshold rate pair.


2014 ◽  
Vol 543-547 ◽  
pp. 2243-2248
Author(s):  
Min Li ◽  
Hong Zhou ◽  
Qin Fei Huang

The outage probability (OP) of dual-hop fixed-gain amplify-and-forward (AF) relay over Rayleigh fading channels is analyzed when the feedback delay, the estimation error and the multiple co-channel interferences (CCI) are all present. A closed-form expression for the OP is derived and validated by Monte Carlo simulations with several scenarios considered, also the impacts of feedback delay, estimation error and CCI have been shown in the numerical results.


2021 ◽  
Author(s):  
Van Vo Nhan ◽  
Dang Ngoc Cuong ◽  
Tran Ban Thach ◽  
Hung Tran

In this paper, the system performance of an energy harvesting (EH) unmanned aerial vehicle (UAV) system for use in disasters was investigated. The communication protocol was divided into two phases. In the first phase, a UAV relay (UR) harvested energy from a power beacon (PB). In the second phase, a base station (BS) transmitted the signal to the UR using non-orthogonal multiple access (NOMA); then, the UR used its harvested energy from the first phase to transfer the signal to two sensor clusters, i.e., low-priority and high-priority clusters, via the decode-and-forward (DF) technique. A closed-form expression for the throughput of the cluster heads of these clusters was derived to analyze the system performance. Monte Carlo simulations were employed to verify our approach.


Author(s):  
Vo Nguyen Quoc Bao ◽  
Vu Van San

In this paper, we propose a novel derivation approach to obtain the exact closed form expression of ergodic capacity for cognitive underlay amplify-and-forward (AF) relay networks over Rayleigh fading channels. Simulation results are performed to verify the analysis results. Numerical results are provided to compare the system performance of cognitive underlay amplify-and-forward relay networks under both cases of AF and decode-and-forward (DF) confirming that the system with DF provides better performance as compared with that with AF. DOI: 10.32913/rd-ict.vol3.no14.563


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5390 ◽  
Author(s):  
Le Van Nguyen ◽  
Ba Cao Nguyen ◽  
Xuan Nam Tran ◽  
Le The Dung

Full-duplex (FD) communication and spatial modulation (SM) are two promising techniques to achieve high spectral efficiency. Recent works in the literature have investigated the possibility of combining the FD mode with SM in the relay system to benefit their advantages. In this paper, we analyze the performance of the FD-SM decode-and-forward (DF) relay system and derive the closed-form expression for the symbol error probability (SEP). To tackle the residual self-interference (RSI) due to the FD mode at the relay, we propose a simple yet effective power allocation algorithm to compensate for the RSI impact and improve the system SEP performance. Both numerical and simulation results confirm the accuracy of the derived SEP expression and the efficacy of the proposed optimal power allocation.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 3459-3468 ◽  
Author(s):  
Derek Kwaku Pobi Asiedu ◽  
Sumaila Mahama ◽  
Sang-Woon Jeon ◽  
Kyoung-Jae Lee

Sign in / Sign up

Export Citation Format

Share Document