scholarly journals Clusters of Healthcare-Associated Legionnaires’ Disease in Two Hospitals of Central Greece

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Maria A. Kyritsi ◽  
Varvara A. Mouchtouri ◽  
Anna Katsiafliaka ◽  
Foteini Kolokythopoulou ◽  
Elias Plakokefalos ◽  
...  

Healthcare-associated Legionnaires’ disease often leads to fatal respiratory tract infection among hospitalized patients. In this report, three cases of Legionnaires’ disease among patients in two different hospitals (Hospital A and Hospital B) were investigated. After conducting an epidemiologic and environmental investigation, the water distribution systems (WDSs) were identified as the possible source of infection, as Legionella pneumophila serogroup 1 (Lp1) was isolated from both clinical and environmental samples. Patients received aerosol therapy with nebulizers during their hospitalization. Based on the results of the investigation, the hospitals’ infection control committees reviewed their policies for Legionnaires’ disease prevention and implemented control measures focusing on using sterile fluids for aerosol treatments.

2014 ◽  
Vol 35 (3) ◽  
pp. 293-299 ◽  
Author(s):  
Beatrice Casini ◽  
Andrea Buzzigoli ◽  
Maria Luisa Cristina ◽  
Anna Maria Spagnolo ◽  
Pietro Del Giudice ◽  
...  

Objective and Design.Legionellacontrol still remains a critical issue in healthcare settings where the preferred approach to health risk assessment and management is to develop a water safety plan. We report the experience of a university hospital, where a water safety plan has been applied since 2002, and the results obtained with the application of different methods for disinfecting hot water distribution systems in order to provide guidance for the management of water risk.Interventions.The disinfection procedures included continuous chlorination with chlorine dioxide (0.4–0.6 mg/L in recirculation loops) reinforced by endpoint filtration in critical areas and a water treatment based on monochloramine (2-3 mg/L). Real-time polymerase chain reaction and a new immunoseparation and adenosine triphosphate bioluminescence analysis were applied in environmental monitoring.Results.After 9 years, the integrated disinfection-filtration strategy significantly reduced positive sites by 55% and the mean count by 78% (P< .05); however, the high costs and the occurrence of a chlorine-tolerant clone belonging toLegionella pneumophilaST269 prompted us to test a new disinfectant. The shift to monochloramine allowed us to eliminate planktonicLegionellaand did not require additional endpoint filtration; however, nontuberculous mycobacteria were isolated more frequently as long as the monochloramine concentration was 2 mg/L; their cultivability was never regained by increasing the concentration up to 3 mg/L.Conclusions.Any disinfection method needs to be adjusted/fine-tuned in individual hospitals in order to maintain satisfactory results over time, and only a locally adapted evidence-based approach allows assessment of the efficacy and disadvantages of the control measures.


2010 ◽  
Vol 138 (12) ◽  
pp. 1823-1828 ◽  
Author(s):  
I. BARRABEIG ◽  
A. ROVIRA ◽  
M. GARCIA ◽  
J. M. OLIVA ◽  
A. VILAMALA ◽  
...  

SUMMARYAn outbreak of Legionnaires' disease affected 12 customers of a supermarket in a town in Catalonia, Spain, between August and November 2006. An epidemiological and environmental investigation was undertaken. Preliminary investigation showed that all patients had visited the same supermarket in this town where a mist machine was found in the fish section. Water samples were collected from the machine and from the supermarket's water distribution system when high-risk samples were excluded. Environmental samples from the mist machine and clinical samples from two patients tested positive for L. pneumophila serogroup 1 and had the same molecular pattern. The PFGE pattern detected in the clinical and mist-machine isolates had never previously been identified in Catalonia prior to the outbreak and has not been identified since. Four days after turning off the machine, new cases ceased appearing. Molecular study supports the hypothesis that the mist machine from the fish section of the supermarket was the source of infection. We believe it is essential to include exposure to mist machines in any legionellosis epidemiological survey.


2021 ◽  
Vol 41 (1) ◽  
pp. 3-7
Author(s):  
Alan Medić ◽  
Ljilja Balorda ◽  
Ivanka Matas ◽  
Ines Leto ◽  
Dinko Puntarić ◽  
...  

Background: The aim of this paper was to present the effectiveness of the mechanical removal of blind ends and flushing of hot water systems at outlets as the only possible emergency measures to reduce the concentration of Legionella spp in hot water. Methods: Two measures have been undertaken: mechanical removal of blind ends and intensive hot water flushing when the water has not been used for more than 7 days. Results: We detected Legionella pneumophila serogroup 1 in concentration of 1.000- 55.000 CFU/L at all samples sites. In the control sampling, after three weeks, we found seven sampling sites negative for Legionella and only two sampling sites positive. All nine sampling sites were negative after ten weeks. Conclusion: Establishing good water flow throughout the hospital seems to be the most important measure, in order to make the multiplication of Legionella in the hot water distribution systems unlikely.


2004 ◽  
Vol 9 (2) ◽  
pp. 10-11 ◽  
Author(s):  
M C Rota ◽  
M G Caporali ◽  
M Massari

In Italy, 35 clusters of travel associated Legionnaires' disease were identified from July 2002, when the European Guidelines for Control and Prevention of Travel Associated Legionnaires' Disease have been adopted by the EWGLINET network, to October 2003. Eight per cent (28.6%) would not have been identified without the network. The clusters detected were small, ranging from 2 cases to a maximum of 6. All clusters involved 5 camping sites and 30 hotels/residences, and an overall of 87 patients. The diagnosis was confirmed in 92.0% of the cases and mainly performed by urinary antigen detection (84.7%). A clinical isolate was available only in one case. Following environmental investigations, samples were collected for all the 35 clusters from the water system, and Legionella pneumophila was found in 23 occasions (65.7%). In 15 resorts out of 35, investigations were already in progress at the time of EWGLI cluster notification, since in Italy full environmental investigation is performed even after notification of a single case. Control measures were implemented in all accommodation sites at risk and one hotel only was closed. In all the 35 clusters, reports were completed and sent on time, highlighting that it is possible to comply with the procedures requested by the European Guidelines.


2010 ◽  
Vol 15 (39) ◽  
Author(s):  
A Trop Skaza ◽  
L Beskovnik ◽  
A Storman ◽  
S Ursic ◽  
B Groboljsek ◽  
...  

We report an outbreak of Legionnaires' disease in a nursing home in Slovenia in August 2010 affecting 15 of 234 residents. To date, Legionnaires' disease has been confirmed in four patients. Further serum analyses and genotyping of isolates are ongoing. The building's water distribution system with dead end sections has been identified as the probable source of infection.


2016 ◽  
Vol 38 (3) ◽  
pp. 306-313 ◽  
Author(s):  
Louise K. Francois Watkins ◽  
Karrie-Ann E. Toews ◽  
Aaron M. Harris ◽  
Sherri Davidson ◽  
Stephanie Ayers-Millsap ◽  
...  

OBJECTIVESTo define the scope of an outbreak of Legionnaires’ disease (LD), to identify the source, and to stop transmission.DESIGN AND SETTINGEpidemiologic investigation of an LD outbreak among patients and a visitor exposed to a newly constructed hematology-oncology unit.METHODSAn LD case was defined as radiographically confirmed pneumonia in a person with positive urinary antigen testing and/or respiratory culture forLegionellaand exposure to the hematology-oncology unit after February 20, 2014. Cases were classified as definitely or probably healthcare-associated based on whether they were exposed to the unit for all or part of the incubation period (2–10 days). We conducted an environmental assessment and collected water samples for culture. Clinical and environmental isolates were compared by monoclonal antibody (MAb) and sequence-based typing.RESULTSOver a 12-week period, 10 cases were identified, including 6 definite and 4 probable cases. Environmental sampling revealedLegionella pneumophilaserogroup 1 (Lp1) in the potable water at 9 of 10 unit sites (90%), including all patient rooms tested. The 3 clinical isolates were identical to environmental isolates from the unit (MAb2-positive, sequence type ST36). No cases occurred with exposure after the implementation of water restrictions followed by point-of-use filters.CONCLUSIONSContamination of the unit’s potable water system with Lp1 strain ST36 was the likely source of this outbreak. Healthcare providers should routinely test patients who develop pneumonia at least 2 days after hospital admission for LD. A single case of LD that is definitely healthcare associated should prompt a full investigation.Infect Control Hosp Epidemiol2017;38:306–313


1987 ◽  
Vol 8 (9) ◽  
pp. 357-363 ◽  
Author(s):  
Richard M. Vickers ◽  
Victor L. Yu ◽  
S. Sue Hanna ◽  
Paul Muraca ◽  
Warren Diven ◽  
...  

AbstractWe conducted a prospective environmental study for Legionella pneumophila in 15 hospitals in Pennsylvania. Hot water tanks, cold water sites, faucets, and show-erheads were surveyed four times over a one-year period. Sixty percent (9/15) of hospitals surveyed were contaminated with L pneumophila. Although contamination could not be linked to a specific municipal water supplier, most of the contaminated supplies came from rivers. Parameters found to be significantly associated with contamination included elevated hot water temperature, vertical configuration of the hot water tank, older tanks, and elevated calcium and magnesium concentrations of the water (P < 0.05). This study suggests that L pneumophila contamination could be predicted based on design of the distribution system, as well as physicochemical characteristics of the water.


Author(s):  
Luna Girolamini ◽  
Silvano Salaris ◽  
Jessica Lizzadro ◽  
Marta Mazzotta ◽  
Maria Rosaria Pascale ◽  
...  

In this study, we aimed to associate the molecular typing of Legionella isolates with a culture technique during routine Legionella hospital environmental surveillance in hot water distribution systems (HWDSs) to develop a risk map able to be used to prevent nosocomial infections and formulate appropriate preventive measures. Hot water samples were cultured according to ISO 11731:2017. The isolates were serotyped using an agglutination test and genotyped by sequence-based typing (SBT) for Legionella pneumophila or macrophage infectivity potentiator (mip) gene sequencing for non-pneumophila Legionella species. The isolates’ relationship was phylogenetically analyzed. The Legionella distribution and level of contamination were studied in relation to temperature and disinfectant residues. The culture technique detected 62.21% of Legionella positive samples, characterized by L. pneumophila serogroup 1, Legionella non-pneumophila, or both simultaneously. The SBT assigned two sequence types (STs): ST1, the most prevalent in Italy, and ST104, which had never been isolated before. The mip gene sequencing detected L. anisa and L. rubrilucens. The phylogenetic analysis showed distinct clusters for each species. The distribution of Legionella isolates showed significant differences between buildings, with a negative correlation between the measured level of contamination, disinfectant, and temperature. The Legionella molecular approach introduced in HWDSs environmental surveillance permits (i) a risk map to be outlined that can help formulate appropriate disinfection strategies and (ii) rapid epidemiological investigations to quickly identify the source of Legionella infections.


Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 286 ◽  
Author(s):  
Muhammad Atif Nisar ◽  
Kirstin E. Ross ◽  
Melissa H. Brown ◽  
Richard Bentham ◽  
Harriet Whiley

Legionella pneumophila is an opportunistic waterborne pathogen of public health concern. It is the causative agent of Legionnaires’ disease (LD) and Pontiac fever and is ubiquitous in manufactured water systems, where protozoan hosts and complex microbial communities provide protection from disinfection procedures. This review collates the literature describing interactions between L. pneumophila and protozoan hosts in hospital and municipal potable water distribution systems. The effectiveness of currently available water disinfection protocols to control L. pneumophila and its protozoan hosts is explored. The studies identified in this systematic literature review demonstrated the failure of common disinfection procedures to achieve long term elimination of L. pneumophila and protozoan hosts from potable water. It has been demonstrated that protozoan hosts facilitate the intracellular replication and packaging of viable L. pneumophila in infectious vesicles; whereas, cyst-forming protozoans provide protection from prolonged environmental stress. Disinfection procedures and protozoan hosts also facilitate biogenesis of viable but non-culturable (VBNC) L. pneumophila which have been shown to be highly resistant to many water disinfection protocols. In conclusion, a better understanding of L. pneumophila-protozoan interactions and the structure of complex microbial biofilms is required for the improved management of L. pneumophila and the prevention of LD.


2007 ◽  
Vol 28 (9) ◽  
pp. 1085-1088 ◽  
Author(s):  
Erica Leoni ◽  
Rossella Sacchetti ◽  
Manuela Aporti ◽  
Claudio Lazzari ◽  
Manuela Donati ◽  
...  

A prospective surveillance study of legionnaires disease and an environmental survey of Legionella species were performed simultaneously in a general hospital. During a period of 3 years, 705 patients with pneumonia were screened with a Legionella urinary antigen test, and pneumonia was confirmed by culture and serological tests. Twelve cases of legionnaires disease were identified, none of which were hospital acquired, despite the fact that 60% of hospital water samples were contaminated with Legionella pneumophila at a concentration of more than 103 colony-forming units/L. The probable source of infection was identified for only 2 community-acquired cases. The results show that environmental contamination alone is not able to predict the risk of legionnaires disease. If no cases are present, monitoring of hospital water systems is of little significance; clinical surveillance is much more important.


Sign in / Sign up

Export Citation Format

Share Document