scholarly journals Isolation of a Trypanosome Related to Trypanosoma theileri (Kinetoplastea: Trypanosomatidae) from Phlebotomus perfiliewi (Diptera: Psychodidae)

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Mattia Calzolari ◽  
Gianluca Rugna ◽  
Emanuela Clementi ◽  
Elena Carra ◽  
Marco Pinna ◽  
...  

The Trypanosoma theileri group includes several trypanosome species hardly distinguishable due to the lack of discriminating morphological characters. Trypanosomes belonging to this group have been isolated from different bovine, ovine, and cervids in Europe, Africa, Asia, and Americas. The principal vectors of the T. theileri group are considered tabanid flies; however, T. melophagium is transmitted exclusively by sheep keds. In 2016, 128 sand flies out of 2,728 trapped in Valsamoggia municipality, Italy, were individually dissected and an unknown trypanosome strain, named TrPhp1, was isolated from a female of the sand fly Phlebotomus perfiliewi. Sequence analysis placed this trypanosome in the T. theileri group with very high homology to other trypanosomes detected in European cervids. This is the first report of the T. theileri group isolation from a sand fly, and the possible role of this insect group in the trypanosome transmission cycle is discussed. Within the T. theileri group, the phylogenetic analysis distinguished several lineages, which, unfortunately, do not correspond with their host specificity and their taxonomic status remains ambiguous.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Wilfredo Sosa-Ochoa ◽  
Javier Varela Amador ◽  
Yokomi Lozano-Sardaneta ◽  
Gabriela Rodriguez Segura ◽  
Concepcion Zúniga Valeriano ◽  
...  

Abstract Background The two most abundant sand fly species on the Honduran Pacific coast are Lutzomyia (Lutzomyia) longipalpis and Pintomyia (Pifanomyia) evansi. Both species are known vectors of Leishmania (Leishmania) infantum, the etiological agent of visceral leishmaniasis (VL) in the Americas. Although VL and non-ulcerative cutaneous leishmaniasis (NUCL) are endemic on the Pacific versant of the Central American Pacific, the latter is the most frequent manifestation of leishmaniasis there. We evaluated the circulation of Leishmania spp. in the sand fly species on El Tigre Island, an endemic area of NUCL. Results We collected 222 specimens of six sand fly species. Lu. longipalpis (180 specimens; 81%) and Pif. (Pi.) evansi (35 specimens; 16%) were the most abundant species. L. (L.) infantum DNA was detected in nine of the 96 specimens analyzed; seven of these specimens were identified as Lu. longipalpis, and the remaining two were Pi.evansi, with an infection rate of 9.4% and 2.7%, respectively. Conclusion We present the first record of L. (L.) infantum DNA in Pi.evansi from a NUCL endemic region of Central America. Our results suggest that Pi. evansi could be a secondary vector of L. (L.) infantum in the transmission cycle of leishmaniasis. The detection of natural infections of L. (L.) infantum in sand flies in this region contributes to an understanding of the epidemiology of leishmaniasis in Honduras.


2017 ◽  
Vol 5 (1) ◽  
pp. 430-441
Author(s):  
Belal Abdallah A. Adam ◽  
Moawia Mukhtar Hassan ◽  
Osman Mohammed Abd Elnour ◽  
Ahmed Hamid Awadallah

Visceral leishmaniasis (VL; kala-azar) is one of the most important parasitic tropical diseases in Sudan   and the Sudan is considered to be one of the most important foci in the world. The visceral leishmaniasis has been described in Sudan since the beginning of the twentieth century. In Sudan, VL is caused by Leishmania donovani complex: MON 18, MON 30 and MON 82 zymodemes and  The proven vector is Phlebotomus (Larroussius) orientalis, in this study a survey was carried out to identify the principal vector of VL based on Leishmania infection, morphological characters and to determine some ecological aspects of the sand flies prevalent in the area . Ten species of sand flies were recorded, three Phlebotomus species and seven Sergentomyia species of these sandflies, P. rodhaini was collected only from Acacia seyal/Balanities aegyptiaca at the Island whereas S. hunti was collected from the Acacia nilotica forest only of the total collections, P. orientalis representing 3.80% (248 specimens) of the total collection and P. papatasi were 3.11% of the collection. Sand flies identification was done under a binocular microscope at 40x (magnification). The main features used for sand flies identification were the sperm theca of the female, the termination of the male and the pharyngeal and the ciboria toothed structures of both sexes. According to results of this study we recommended the following:  more studies are needed in the future to determine the transmission season, and infection rates of Leishmania parasites in human and the animal host in this area. Annually Entomological surveys must be done to determine density of Sand fly Vectors and Encourage the use of personal protection tools (ITNs), repellents, and improving of houses to avoid bite of sand fly.


Author(s):  
R C S Guimarães ◽  
E F Marialva ◽  
J A Feijó ◽  
J W Pereira-Silva ◽  
K M Martins-Campos ◽  
...  

Abstract Trypanosomatids (Kinetoplastida:Trypanosomatidae) protozoa are a diverse group of obligate parasites. The genera Trypanosoma and Leishmania are the most studied because of their medical importance. This work aims to evaluate the effects of anthropization processes on the composition of the phlebotomine sand fly fauna and the natural infection by Trypanosomatids, with emphasis on Leishmania. At all 3,186 sand flies were collected, distributed in 13 genera and 52 species, being Ny. umbratilis the most abundant species. There was no difference in the diversity between canopy and soil environments. The species abundance and richness were higher in the forest environment while species diversity and evenness were highest in the forest edge. The ITS1 region was used by PCR-RFLP to identify the fragment profiles of Leishmania species, followed by genetic sequencing. Here were analyzed 100 pools of female sand flies, being six positive for DNA parasite. PCR-RFLP fragment patterns similar to Endotrypanum sp. were observed in Nyssomyia anduzei, Psychodopygus amazonensis and Lutzomyia gomezi, and those fragments similar to Leishmania (Leishmania) amazonensis were observed in Bichromomyia flaviscutellata. ITS1 sequencing confirmed the presence of Leishmania sp. in Bi. flaviscutellata, and Leishmania (Viannia) naiffi in Ny. anduzei, Psychodopygus amazonensis, and Lu. gomezi. This is the first record of Lu. gomezi and Ps. amazonensis infection by L. naiffi in the State of Amazonas. These results show the trypanosomatid infection in sandflies from different landscapes in a rural settlement, and the finding of species infected with L.(V.) naiffi suggest that they can develop a role in the transmission cycle of leishmaniasis.


2020 ◽  
Author(s):  
Mariana M. Chaves ◽  
Sang Hun Lee ◽  
Olena Kamenyeva ◽  
Kashinath Ghosh ◽  
David Sacks

AbstractThere is substantial experimental evidence to indicate that Leishmania infections that are transmitted naturally by the bites of infected sand flies differ in fundamental ways from the inflammatory and immune reactions initiated by needle inocula. We have used flow cytometry and intravital microscopy (IVM) to reveal the heterogeneity of sand fly transmission sites with respect to the subsets of phagocytes in the skin that harbor L. major within the first hours and days after infection. By flow cytometry analysis, dermis resident macrophages (TRMs) were on average the predominant infected cell type at 1 hr and 24 hr. By confocal IVM, the co-localization of L. major and neutrophils varied depending on the proximity of deposited parasites to the presumed site of vascular damage, defined by the highly localized swarming of neutrophils. Some of the dermal TRMs could be visualized acquiring their infections via transfer from or efferocytosis of parasitized neutrophils, providing direct evidence for the “Trojan Horse” model. The role of neutrophil engulfment by dermal TRMs and the involvement of the Tyro3/Axl/Mertk family of receptor tyrosine kinases in these interactions and in sustaining the anti-inflammatory program of dermal TRMs was supported by the effects observed in neutrophil depleted and in Axl-/-Mertk-/- mice. The Axl-/-Mertk-/- mice also displayed reduced parasite burdens but more severe pathology following L. major infection transmitted by sand fly bite.SummarySand flies transmit Leishmania major which causes cutaneous leishmaniasis in humans and in non-human hosts. Our analyses of sand fly transmission sites of L. major in the mouse skin revealed that dermis resident macrophages (TRM) were the predominant phagocytes to take up the parasite within the first 24 hr post-bite. The early involvement of neutrophils varied depending on the proximity of deposited parasites to the site of tissue damage around which the neutrophils coalesced. By intra-vital microscopy, some of the dermal TRMs could be visualized acquiring their infections by direct transfer from or phagocytosis of parasitized neutrophils. The involvement of the Tyro3/Axl/Mertk family of receptor tyrosine kinases in these cellular interactions and in sustaining the anti-inflammatory functions of dermal TRMs was supported by the reduced parasite burdens but more severe pathology observed in Axl-/-Mertk-/- mice. The heterogeneity of sand fly transmission sites with respect to the dose of parasites and the early cellular interactions described here likely contribute to the wide range of infection outcomes that are associated with natural transmission of L. major observed in mouse models and possibly humans.


Zootaxa ◽  
2008 ◽  
Vol 1740 (1) ◽  
pp. 1 ◽  
Author(s):  
FELIPE ARLEY COSTA PESSOA ◽  
MARLISSON AUGUSTO COSTA FEITOSA ◽  
ELOY GUILLERMO CASTELLÓN-BERMÚDEZ ◽  
CLAUDIA MARÍA RÍOS-VELÁSQUEZ ◽  
RICHARD DOUGLAS WARD

Phlebotomine sand flies (Diptera: Psychodidae) are vectors of Leishmania, Bartonella and several arboviruses. Sand fly taxonomy has been mainly based on adult morphological characters and few larval characters have been used. In this work the egg and all larval instars of Evandromyia carmelinoi (= Lutzomyia carmelinoi migonei group of authors) are described, as well as the fourth instar of E. lenti, two morphologically similar species. Scanning electron microscopy (SEM) and light microscopy were used to describe the species. The sand flies E. carmelinoi and E. lenti can be differentiated most readily by the antennae and the shoulder accessory b setae on the thoracic segments. Some information on the mouthpart morphology of Phlebotominae and Psychodinae that could be useful for future phylogenetic and systematic studies is also provided.


2020 ◽  
Vol 57 (5) ◽  
pp. 1510-1515 ◽  
Author(s):  
M Emin Limoncu ◽  
İ Cüneyt Balcıoğlu ◽  
Seray Töz ◽  
Samiye Demir ◽  
Hakan Kavur ◽  
...  

Abstract Cutaneous (CL) and visceral (VL) forms of leishmaniasis, transmitted by sand flies, are seen in all countries located in Mediterranean Basin including Turkey. In this study, we aimed to conduct an entomological survey for the detection of sand fly fauna and vector species in Mersin province, one of the important endemic areas for CL in Turkey. In total, 912 sand fly specimens were collected in 2010 and 2011 using CDC light traps. Nine Phlebotomus (Diptera: Psychodidae) and three Sergentomyia (Diptera: Psychodidae) species were detected. Of the collected Phlebotomus sand flies, P. sergenti Parrot, 1917 (30.1%) was the most dominant followed by P. alexandri Sinton, 1928 (18.2%), P. neglectus/syriacus Tonnoir Adler (12.0%), P. tobbi Adler & Theodor, 1930 (11.7%), and P. papatasi Scopoli, 1786 (10.2%), while S. minuta Rondani, 1843 (11.3%) was the dominant species among Sergentomyia. During the field work in 2011, female specimens (n = 81) were screened for the presence of Leishmania promastigotes by midgut dissection, and all were found negative. The rest of the collected female specimens (n = 334) were pooled according to species (P. alexandri, P. neglectus/syriacus, P. papatasi, P. sergenti, P. simici, and P. tobbi) and location (Mut, Silifke, and Anamur). In total, 29 pools were generated and real-time ITS1 PCR assay was performed to detect and identify natural Leishmania Ross, 1903 (Kinetoplastida: Trypanosomatida) infection. Two pools, both from Mut town, containing P. sergenti specimens were found positive and Leishmania tropica Ross, 1903 was identified as an infectious agent for both pools. In conclusion, the sand fly fauna was determined in an endemic area for CL. The detection of L. tropica DNA in P. sergenti specimens showed the possible vectorial role of this species in Mersin province.


Zootaxa ◽  
2013 ◽  
Vol 3609 (1) ◽  
pp. 85-90 ◽  
Author(s):  
CAROLINA BIONI GARCIA TELES ◽  
RUI ALVES FREITAS ◽  
ARLEY FARIA JOSÉ DE OLIVEIRA ◽  
GUILHERME MAERSCHNER OGAWA ◽  
EDICARLOS ANDRÉ CAVALCANTE DE ARAÚJO ◽  
...  

Groundbreaking studies of phlebotomine sand fly populations in Assis Brasil, State of Acre, Brazil, resulted in the collec-tion of 13 new records of phlebotomine sand flies and one previously undescribed species. Lutzomyia naiffi sp. nov. is described here. The new species is similar to Lutzomyia columbiana (Ristorcelli & Van Ty) in measurements and other morphological characters.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Orawan Phuphisut ◽  
Chanyapat Nitatsukprasert ◽  
Nattaphol Pathawong ◽  
Boonsong Jaichapor ◽  
Arissara Pongsiri ◽  
...  

Abstract Background Phlebotomine sand flies are vectors of Leishmania spp. At least 27 species of sand flies have been recorded in Thailand. Although human leishmaniasis cases in Thailand are mainly imported, autochthonous leishmaniasis has been increasingly reported in several regions of the country since 1999. Few studies have detected Leishmania infection in wild-caught sand flies, although these studies were carried out only in those areas reporting human leishmaniasis cases. The aim of this study was therefore to identity sand fly species and to investigate Leishmania infection across six provinces of Thailand. Methods Species of wild-caught sand flies were initially identified based on morphological characters. However, problems identifying cryptic species complexes necessitated molecular identification using DNA barcoding in parallel with identification based on morphological characters. The wild-caught sand flies were pooled and the DNA isolated prior to the detection of Leishmania infection by a TaqMan real-time PCR assay. Results A total of 4498 sand flies (1158 males and 3340 females) were caught by trapping in six provinces in four regions of Thailand. The sand flies were morphologically classified into eight species belonging to three genera (Sergentomyia, Phlebotomus and Idiophlebotomus). Sergentomyia iyengari was found at all collection sites and was the dominant species at most of these, followed in frequency by Sergentomyia barraudi and Phlebotomus stantoni, respectively. DNA barcodes generated from 68 sand flies allowed sorting into 14 distinct species with 25 operational taxonomic units, indicating a higher diversity (by 75%) than that based on morphological identification. Twelve barcoding sequences could not be assigned to any species for which cytochrome c oxidase subunit I sequences are available. All tested sand flies were negative for Leishmania DNA. Conclusions Our results confirm the presence of several sand fly species in different provinces of Thailand, highlighting the importance of using DNA barcoding as a tool to study sand fly species diversity. While all female sand flies tested in this study were negative for Leishmania, the circulation of Leishmania spp. in the investigated areas cannot be ruled out. Graphical abstract


2020 ◽  
Vol 57 (4) ◽  
pp. 1286-1292 ◽  
Author(s):  
Felipe Dutra Rêgo ◽  
Getúlio Dornelles Souza ◽  
Júlia Bahia Miranda ◽  
Lais Vieira Peixoto ◽  
José Dilermando Andrade-Filho

Abstract In view of recent cases of human and canine visceral leishmaniasis reported in Porto Alegre, Rio Grande do Sul, Brazil, we investigated the sand fly fauna inhabiting the neighborhoods of Morro Santana and Jardim Carvalho, Brazil, continuing a series of entomological surveys aimed to identify potential vectors of Leishmania (Ross, 1903) parasites. Sand flies were collected monthly from October 2016 to October 2017 using CDC light traps in the intradomiciliary and peridomiciliary environments of seven residences. Sand fly abundance was correlated to climatic variables. Females were pooled by species, location, and date for Leishmania DNA molecular screening using ITS1 and kDNA polymerase chain reaction. In total, 501 sand flies from five species were collected in which Lutzomyia gaminarai (Cordero, Vogelsang & Cossio, 1928) (Diptera: Psychodidae) (78%) was the most abundant species in the intradomiciliary sites while Migonemyia migonei (Franca, 1920) (Diptera: Psychodidae) (43.3%) was the most abundant in the peridomiciliary sites. A higher number of sand flies were collected during the warmest months, from December to March (Mann–Whitney statistical test – P < 0.001). Leishmania infantum DNA was detected in Lu. gaminarai (2), Pintomyia fischeri (Pinto, 1926) (1) and Mg. migonei (1). Leishmania braziliensis DNA was detected in Lu. gaminarai (1) and Pi. fischeri (1). Our results add support to the possible vector role of Pi. fischeri in the epidemiological cycle of Le. infantum in Brazil. Furthermore, the first documented detection of Leishmania DNA in Lu. gaminarai may be indicative of multiple vectors being involved in the Leishmania cycle within Porto Alegre.


Author(s):  
Madhavi L Kakumanu ◽  
Bahjat F Marayati ◽  
Coby Schal ◽  
Charles S Apperson ◽  
Gideon Wasserberg ◽  
...  

Abstract Phlebotomine sand flies are worldwide vectors of Leishmania parasites as well as other bacterial and viral pathogens. Due to the variable impact of traditional vector control practices, a more ecologically based approach is needed. The goal of this study was to isolate bacteria from the most attractive substrate to gravid Phlebotomus papatasi Scopoli sand flies and determine the role of bacterial volatiles in the oviposition attractancy of P. papatasi using behavioral assays. We hypothesized that gravid sand flies are attracted to bacterially derived semiochemical cues associated with breeding sites. Bacteria were isolated from a larvae-conditioned rearing medium, previously shown to be highly attractive to sand flies. The isolated bacteria were identified by amplifying and sequencing 16S rDNA gene fragments, and 12 distinct bacterial species were selected for two-choice olfactometer bioassays. The mix of 12 bacterial isolates elicited strong attraction at the lower concentration of 107 cells per ml and significant repellence at a high concentration of 109 cells per ml. Three individual isolates (SSI-2, SSI-9, and SSI-11) were particularly attractive at low doses. In general, we observed dose-related effects, with some bacterial isolates stimulating negative and some positive dose–response curves in sand fly attraction. Our study confirms the important role of saprophytic bacteria, gut bacteria, or both, in guiding the oviposition-site selection behavior of sand flies. Identifying the specific attractive semiochemical cues that they produce could lead to development of an attractive lure for surveillance and control of sand flies.


Sign in / Sign up

Export Citation Format

Share Document