scholarly journals A Machine Learning Approach to the Detection of Pilot’s Reaction to Unexpected Events Based on EEG Signals

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Bartosz Binias ◽  
Dariusz Myszor ◽  
Krzysztof A. Cyran

This work considers the problem of utilizing electroencephalographic signals for use in systems designed for monitoring and enhancing the performance of aircraft pilots. Systems with such capabilities are generally referred to as cognitive cockpits. This article provides a description of the potential that is carried by such systems, especially in terms of increasing flight safety. Additionally, a neuropsychological background of the problem is presented. Conducted research was focused mainly on the problem of discrimination between states of brain activity related to idle but focused anticipation of visual cue and reaction to it. Especially, a problem of selecting a proper classification algorithm for such problems is being examined. For that purpose an experiment involving 10 subjects was planned and conducted. Experimental electroencephalographic data was acquired using an Emotiv EPOC+ headset. Proposed methodology involved use of a popular method in biomedical signal processing, the Common Spatial Pattern, extraction of bandpower features, and an extensive test of different classification algorithms, such as Linear Discriminant Analysis, k-nearest neighbors, and Support Vector Machines with linear and radial basis function kernels, Random Forests, and Artificial Neural Networks.

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4523 ◽  
Author(s):  
Carlos Cabo ◽  
Celestino Ordóñez ◽  
Fernando Sáchez-Lasheras ◽  
Javier Roca-Pardiñas ◽  
and Javier de Cos-Juez

We analyze the utility of multiscale supervised classification algorithms for object detection and extraction from laser scanning or photogrammetric point clouds. Only the geometric information (the point coordinates) was considered, thus making the method independent of the systems used to collect the data. A maximum of five features (input variables) was used, four of them related to the eigenvalues obtained from a principal component analysis (PCA). PCA was carried out at six scales, defined by the diameter of a sphere around each observation. Four multiclass supervised classification models were tested (linear discriminant analysis, logistic regression, support vector machines, and random forest) in two different scenarios, urban and forest, formed by artificial and natural objects, respectively. The results obtained were accurate (overall accuracy over 80% for the urban dataset, and over 93% for the forest dataset), in the range of the best results found in the literature, regardless of the classification method. For both datasets, the random forest algorithm provided the best solution/results when discrimination capacity, computing time, and the ability to estimate the relative importance of each variable are considered together.


2013 ◽  
pp. 1516-1534
Author(s):  
Lochi Yu ◽  
Cristian Ureña

Since the first recordings of brain electrical activity more than 100 years ago remarkable contributions have been done to understand the brain functionality and its interaction with environment. Regardless of the nature of the brain-computer interface BCI, a world of opportunities and possibilities has been opened not only for people with severe disabilities but also for those who are pursuing innovative human interfaces. Deeper understanding of the EEG signals along with refined technologies for its recording is helping to improve the performance of EEG based BCIs. Better processing and features extraction methods, like Independent Component Analysis (ICA) and Wavelet Transform (WT) respectively, are giving promising results that need to be explored. Different types of classifiers and combination of them have been used on EEG BCIs. Linear, neural and nonlinear Bayesian have been the most used classifiers providing accuracies ranges between 60% and 90%. Some demand more computational resources like Support Vector Machines (SVM) classifiers but give good generality. Linear Discriminant Analysis (LDA) classifiers provide poor generality but low computational resources, making them optimal for some real time BCIs. Better classifiers must be developed to tackle the large patterns variability across different subjects by using every available resource, method or technology.


2019 ◽  
Vol 11 (10) ◽  
pp. 1195 ◽  
Author(s):  
Minsang Kim ◽  
Myung-Sook Park ◽  
Jungho Im ◽  
Seonyoung Park ◽  
Myong-In Lee

This study compared detection skill for tropical cyclone (TC) formation using models based on three different machine learning (ML) algorithms-decision trees (DT), random forest (RF), and support vector machines (SVM)-and a model based on Linear Discriminant Analysis (LDA). Eight predictors were derived from WindSat satellite measurements of ocean surface wind and precipitation over the western North Pacific for 2005–2009. All of the ML approaches performed better with significantly higher hit rates ranging from 94 to 96% compared with LDA performance (~77%), although false alarm rate by MLs is slightly higher (21–28%) than that by LDA (~13%). Besides, MLs could detect TC formation at the time as early as 26–30 h before the first time diagnosed as tropical depression by the JTWC best track, which was also 5 to 9 h earlier than that by LDA. The skill differences across MLs were relatively smaller than difference between MLs and LDA. Large yearly variation in forecast lead time was common in all models due to the limitation in sampling from orbiting satellite. This study highlights that ML approaches provide an improved skill for detecting TC formation compared with conventional linear approaches.


2012 ◽  
Vol 8 (S295) ◽  
pp. 180-180
Author(s):  
He Ma ◽  
Yanxia Zhang ◽  
Yongheng Zhao ◽  
Bo Zhang

AbstractIn this work, two different algorithms: Linear Discriminant Analysis (LDA) and Support Vector Machines (SVMs) are combined for the classification of unresolved sources from SDSS DR8 and UKIDSS DR8. The experimental result shows that this joint approach is effective for our case.


Electroencephalographic (EEG) signals are the preferred input for non-invasive Brain-Computer Interface (BCI). Efficient signal processing strategies, including feature extraction and classification, are required to distinguish the underlying task of BCI. This work proposes the optimized common spatial pattern(CSP) filtering technique as the feature extraction method for collecting the spatially spread variation of the signal. The bandpass filter (BPF) designed for this work assures the availability of event-related synchronized (ERS) and event-related desynchronized (ERD) signal as input to the spatial filter. This work takes consideration of the area-specific electrodes for feature formation. This work further proposes a comparative analysis of classifier algorithms for classification accuracy(CA), sensitivity and specificity and the considered algorithms are Support Vector Machine(SVM), Linear Discriminant Analysis(LDA), and K-Nearest Neighbor(KNN). Performance parameters considered are CA, sensitivity, and selectivity, which can judge the method not only for high CA but also inclining towards the particular class. Thus it will direct in the selection of appropriate classifier as well as tuning the classifier to get the balanced results. In this work, CA, the prior performance parameter is obtained to be 88.2% sensitivity of 94.2% and selectivity 82.2% for the cosine KNN classifier. SVM with linear kernel function also gives the comparable results, thus concluding that the robust classifiers perform well for all parameters in case of CSP for feature extraction.


Biometric technology has been commonly used for authentication. Fingerprint or iris become one of the biometrics that is widely applied. However, this type of biometrics tends to be easily falsified and damaged. So it is misused for manipulating actions and even crime. Therefore a new biometric method is needed to overcome this problem. One potential modality is biometrics based on an electrocardiogram (ECG) signal. This research simulates a one-lead ECG waveform for person authentication. ECG waves were taken from eleven healthy adult volunteers with a length of 60 seconds. ECG waves from each person are segmented into 10 sections so that a total of 110 ECG waves are used for person authentication simulations. All noise of the ECG waves was removed using a bandpass filter to reduce artifacts and high-frequency noise. Wavelet packet decomposition (3 Level) was applied to decompose the signal in several intrinsic parts so that typical wave information can be retrieved. Entropy-based feature extraction applied to all decomposed signals. A total of 14 entropy features have been calculated and used as predictors in the classification process. Validation and performance tests are carried out by cross-validation combined with linear discriminant analysis and support vector machines with five scenarios. The proposed method provides the highest accuracy of 71.8% using discriminant analysis and cubic support vector machine. The best accuracy value was achieved if all entropy features from all wavelet decomposition levels are used as predictors in the classification process. This research is expected to be a reference that ECG has the potential to become a future biometric modality


Sign in / Sign up

Export Citation Format

Share Document