scholarly journals An Earlier Predictive Rollover Index Designed for Bus Rollover Detection and Prevention

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Shun Tian ◽  
Lang Wei ◽  
Chris Schwarz ◽  
WenCai Zhou ◽  
Yuan Jiao ◽  
...  

As vehicle rollovers annually cause a great deal of traffic-related deaths, an increasing number of vehicles are being equipped with rollover prevention systems with the aim of avoiding such accidents. To improve the functionality of active rollover prevention systems, this study provided a potential enhanced method with the intention to predict the tendency of the lateral load transfer ratio (LTR), which is the most common rollover index. This will help provide a certain amount of lead time for the control system to respond more effectively. Before the prediction process, an estimation equation was proposed to better estimate the LTR; the equation was validated using Simulink and TruckSim. Further, to eliminate the influence of drawbacks and make this method practical, a buffer operator was added. Simulation results showed that grey LTR (GLTR) was able to roundly predict the future trend of the LTR based on current and previous data. Under the tests of “Sine with Dwell” (Sindwell) and double lane change (DLC), the GLTR could provide the control system with sufficient time beforehand. Additionally, to further examine the performance of the GLTR, a differential system model was adopted to verify its effectiveness. Through the Sindwell maneuver, it was demonstrated that the GLTR index could improve the performance of the rollover prevention systems by achieving the expected response.

2011 ◽  
Vol 317-319 ◽  
pp. 672-677
Author(s):  
Bin Wei ◽  
Ji Bin Hu ◽  
Zeng Xiong Peng

A novel vector control system of the split double-rotor motor based on indirect vector control principle has been proposed. The mathematic models of the primary machine and the secondary machine are set up respectively. Through the coupling of the two models, the system model of the split double-rotor motor is build. Matlab software is used for the simulation and analysis of this indirect vector control system. According to the simulation results, the validity of system model is proved with nicer static and dynamic capability, and without steady-state error in stable state. These are important to analyze and design the double-rotor motor. Furthermore, the results provide the basis for simulation and apply of double-rotor motor in HEV.


2011 ◽  
Vol 84-85 ◽  
pp. 183-187 ◽  
Author(s):  
Jin Hua Wang ◽  
Wen Juan Huang ◽  
Hong Yan Zhang ◽  
Yao Gang Li

In this paper, we took lathe as the research object, and established an active vibration control system model based on neural network AVC (Active Vibration Control) system, and the Matlab simulation results showed that the AVC system can reduce vibration effectively and improve the lathe’s accuracy.


Author(s):  
Mansour Ataei ◽  
Amir Khajepour ◽  
Soo Jeon

In order to develop a rollover prevention system, it is essential to have a reliable index that properly indicates real-time rollover danger during vehicle maneuvers. The existing rollover indices are mainly for un-tripped rollovers and have limitations in detecting tripped rollovers. This study introduces a general rollover index (GRI) for the detection of rollover in both tripped and un-tripped cases and also on flat and sloped roads. Based on the lateral load transfer ratio, the proposed index is analytically derived in terms of measurable vehicle parameters and state variables. The general rollover index considers both lateral and vertical road inputs and thus can indicate tripped rollovers in the instance of curbs, soft soil or bumps. Sensitivity analysis for the proposed index is also provided to evaluate the effects of different vehicle parameters and different state variables on tripped and un-tripped rollovers. The introduced index can be used not only for the development of active rollover prevention systems, but also for rollover analysis and design of vehicles. The performance of the introduced general rollover index is validated through simulations using a high-fidelity CarSim model for a SUV.


2018 ◽  
Vol 41 (3) ◽  
pp. 859-874 ◽  
Author(s):  
Wanzhong Zhao ◽  
Lin Ji ◽  
Chunyan Wang

A rollover dynamic model that merges the active front steering model and differential braking model is established in this paper. After analyzing and improving the existing rollover evaluation method, a new evaluation method that takes both sprung mass and under-sprung mass into consideration is proposed. The reliability of the improved LTR (lateral load transfer rate) is confirmed by simulation results obtained from MATLAB and CARSIM where, all of three evaluation methods are taken under the same condition. The accuracy of the rollover evaluation index depends on the centroid height of under-sprung mass and the ratio of under-sprung mass and under-sprung mass. In order to achieve the desired tracking effect and anti-jamming capability, an integrated rollover control system based on active steering and differential braking is designed where a H∞ controller is adopted. The results of simulation under J-turn condition indicate that the control system has strong stability and robustness. When the vehicle is under the risk of rollover and reaches the setting threshold, the designed H∞ controller will actively keep the vehicle under the critical state.


Author(s):  
Neng Wan ◽  
Guangping Zeng ◽  
Chunguang Zhang ◽  
Dingqi Pan ◽  
Songtao Cai

This paper deals with a new state-constrained control (SCC) system of vehicle, which includes a multi-layer controller, in order to ensure the vehicle’s lateral stability and steering performance under complex environment. In this system, a new constraint control strategy with input and state constraints is applied to calculate the steady-state yaw moment. It ensures the vehicle lateral stability by tracking the desired yaw rate value and limiting the allowable range of the side slip. Through the linkage of the three-layer controller, the tire load is optimized and achieve minimal vehicle velocity reduction. The seven-degree-of-freedom (7-DOF) simulation model was established and simulated in MATLAB to evaluate the effect of the proposed controller. Through the analysis of the simulation results, compared with the traditional ESC and integrated control, it not only solves the problem of obvious velocity reduction, but also solves the problem of high cost and high hardware requirements in integrated control. The simulation results show that designed control system has better performance of path tracking and driving state, which is closer to the desired value. Through hardware-in-the-loop (HIL) practical experiments in two typical driving conditions, the effectiveness of the above proposed control system is further verified, which can improve the lateral stability and maneuverability of the vehicle.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


Author(s):  
Fengchen Wang ◽  
Yan Chen

This paper presents a novel mass-center-position (MCP) metric for vehicle rollover propensity detection. MCP is first determined by estimating the positions of the center of mass of one sprung mass and two unsprung masses with two switchable roll motion models, before and after tire lift-off. The roll motion information without saturation can then be provided through MCP continuously. Moreover, to detect completed rollover statues for both tripped and untripped rollovers, the criteria are derived from d’Alembert principle and moment balance conditions based on MCP. In addition to tire lift-off, three new rollover statues, rollover threshold, rollover occurrence, and vehicle jumping into air can be all identified by the proposed criteria. Compared with an existing rollover index, lateral load transfer ratio, the fishhook maneuver simulation results in CarSim® for an E-class SUV show that MCP metric can successfully predict the vehicle impending rollover without saturation for untripped rollovers. Tripped rollovers caused by a triangle road bump are also successfully detected in the simulation. Thus, MCP metric can be successfully applied for rollover propensity prediction.


Sign in / Sign up

Export Citation Format

Share Document