scholarly journals Spatial Downscaling of TRMM Precipitation Data Using an Optimal Subset Regression Model with NDVI and Terrain Factors in the Yarlung Zangbo River Basin, China

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jinping Liu ◽  
Wanchang Zhang ◽  
Ning Nie

High accuracy, high spatial resolution precipitation data is important for understanding basin-scale hydrology and the spatiotemporal distributions of regional precipitation. The objective of this study was to develop a reliable statistical downscaling algorithm to produce high quality, high spatial resolution precipitation products from Tropical Rainfall Monitoring Mission (TRMM) 3B43 data over the Yarlung Zangbo River Basin using an optimal subset regression (OSR) model combined with multiple topographical factors, the Normalized Difference Vegetation Index (NDVI), and observational data from rain gauge stations. After downscaling, the bias between TRMM 3B43 and rain gauge data decreased considerably from 0.397 to 0.109, the root-mean-square error decreased from 235.16 to 124.60 mm, and the r2 increased from 0.54 to 0.61, indicating significant improvement in the spatial resolution and accuracy of the TRMM 3B43 data. Moreover, the spatial patterns of both precipitation rates of change and their corresponding p value statistics were consistent between the downscaled results and the original TRMM 3B43 during the 2001–2014 period, which verifies that the downscaling method performed well in the Yarlung Zangbo River Basin. Its high performance in downscaling precipitation was also proven by comparing with other models. All of these findings indicate that the proposed approach greatly improved the quality and spatial resolution of TRMM 3B43 rainfall products in the Yarlung Zangbo River Basin, for which rain gauge data is limited. The potential of the post-real-time Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) downscaled precipitation product was also demonstrated in this study.

2019 ◽  
Author(s):  
Gaoyun Shen ◽  
Nengcheng Chen ◽  
Wei Wang ◽  
Zeqiang Chen

Abstract. Accurate and consistent satellite-based precipitation estimates blended with rain gauge data are important for regional precipitation monitoring and hydrological applications, especially in regions with limited rain gauges. However, existing fusion precipitation estimates often have large uncertainties over mountainous areas with complex topography and sparse rain gauges, and the existing data blending algorithms are very bad at removing the day-by-day random errors. Therefore, the development of effective methods for high-accuracy precipitation estimates over complex terrain and on a daily scale is of vital importance for mountainous hydrological applications. This study aims to offer a novel approach for blending daily precipitation gauge data, gridded precipitation data and the Climate Hazards Group Infrared Precipitation (CHIRP, daily, 0.05°) satellite-derived precipitation estimates over the Jinsha River Basin for the period of June–July–August in 2016. This method is named the Wuhan University Satellite and Gauge precipitation Collaborated Correction (WHU-SGCC). The results show that the WHU-SGCC method is effective in precipitation bias adjustments from point to surface, which is evaluated by categorical indices. Moreover, the accuracy of the spatial distribution of the precipitation estimates derived from the WHU-SGCC method is related to the complexity of the topography. The validation also verifies that the proposed approach is effective in the detection of precipitation events that are less than 20 mm. This study indicates that the WHU-SGCC approach is a promising tool to monitor monsoon precipitation over Jinsha River Basin, the complicated mountainous terrain with sparse rain gauge data, considering the spatial correlation and the historical precipitation characteristics. The daily precipitation estimations at 0.05° resolution over Jinsha River Basin in summer 2016, derived from WHU-SGCC are available at the PANGAEA Data Publisher for Earth & Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.896615).


2019 ◽  
Vol 11 (4) ◽  
pp. 1711-1744 ◽  
Author(s):  
Gaoyun Shen ◽  
Nengcheng Chen ◽  
Wei Wang ◽  
Zeqiang Chen

Abstract. Accurate and consistent satellite-based precipitation estimates blended with rain gauge data are important for regional precipitation monitoring and hydrological applications, especially in regions with limited rain gauges. However, the existing fusion precipitation estimates often have large uncertainties over mountainous areas with complex topography and sparse rain gauges, and most of the existing data blending algorithms are not good at removing the day-by-day errors. Therefore, the development of effective methods for high-accuracy precipitation estimates over complex terrain and at a daily scale is of vital importance for mountainous hydrological applications. This study aims to offer a novel approach for blending daily precipitation gauge data and the Climate Hazards Group Infrared Precipitation (CHIRP; daily, 0.05∘) satellite-derived precipitation developed by UC Santa Barbara over the Jinsha River basin from 1994 to 2014. This method is called the Wuhan University Satellite and Gauge precipitation Collaborated Correction (WHU-SGCC). The results show that the WHU-SGCC method is effective for liquid precipitation bias adjustments from points to surfaces as evaluated by multiple error statistics and from different perspectives. Compared with CHIRP and CHIRP with station data (CHIRPS), the precipitation adjusted by the WHU-SGCC method has greater accuracy, with overall average improvements of the Pearson correlation coefficient (PCC) by 0.0082–0.2232 and 0.0612–0.3243, respectively, and decreases in the root mean square error (RMSE) by 0.0922–0.65 and 0.2249–2.9525 mm, respectively. In addition, the Nash–Sutcliffe efficiency coefficient (NSE) of the WHU-SGCC provides more substantial improvements than CHIRP and CHIRPS, which reached 0.2836, 0.2944, and 0.1853 in the spring, autumn, and winter. Daily accuracy evaluations indicate that the WHU-SGCC method has the best ability to reduce precipitation bias, with average reductions of 21.68 % and 31.44 % compared to CHIRP and CHIRPS, respectively. Moreover, the accuracy of the spatial distribution of the precipitation estimates derived from the WHU-SGCC method is related to the complexity of the topography. The validation also verifies that the proposed approach is effective at detecting major precipitation events within the Jinsha River basin. In spite of the correction, the uncertainties in the seasonal precipitation forecasts in the summer and winter are still large, which might be due to the homogenization attenuating the extreme rain event estimates. However, the WHU-SGCC approach may serve as a promising tool to monitor daily precipitation over the Jinsha River basin, which contains complicated mountainous terrain with sparse rain gauge data, based on the spatial correlation and the historical precipitation characteristics. The daily precipitation estimations at the 0.05∘ resolution over the Jinsha River basin during all four seasons from 1990 to 2014, derived from WHU-SGCC, are available at the PANGAEA Data Publisher for Earth & Environmental Science portal (https://doi.org/10.1594/PANGAEA.905376, Shen et al., 2019).


2020 ◽  
Author(s):  
Yaozhi Jiang ◽  
Kun Yang ◽  
Xiaodong Li ◽  
Wenjiang Zhang ◽  
Yan Shen ◽  
...  

<p>Precipitation in mountainous areas provides abundant water resources for downstream regions, and reliable precipitation data in these areas is of crucial importance for the management of water resources and water-related disasters. Because in-situ precipitation data are usually scarce in mountainous areas, satellite-based precipitation products are expected to play an important role; however, they should be carefully validated before application. This study evaluated the performance of three high-resolution precipitation products in the mountainous Qingyi River basin, by comparison with both rain gauge-based and water budget-based methods. The basin is located at the eastern margin of the Tibetan Plateau, and has high precipitation leading to high runoff (~1100 mm/year). The three precipitation products are CMPA (the China Merged Precipitation Analysis), IMERG (the Integrated Multi-satellitE Retrievals for GPM) and GSMaP (the Global Satellite Mapping of Precipitation). In general, both rain gauge-based and water budget-based methods showed that CMPA has the highest accuracy and IMERG has the poorest accuracy in this region. In two sub-basins with steep terrain and high precipitation, the rain gauge-based evaluation indicated negative or even positive basin-averaged biases of about 1 mm/day or less, but the water budget analysis indicated that all the products had much larger negative biases, of 2.4 ~ 3.8 mm/day. This difference likely arises because the evaluation based on rain gauge data cannot reflect errors in products at the basin-scale, due to the sparse spatial distribution of rain gauges. Finally, observed altitudinal gradients of precipitation were used to correct the precipitation products. Under this approach the water budget can be better closed but is not always satisfactory. Therefore, developing a high-quality precipitation data set for mountainous regions based only on satellite products and sparse ground observations remains challenging and other data sources (e.g. high-resolution meteorological modeling) should be taken into consideration in future.</p>


2020 ◽  
Vol 12 (4) ◽  
pp. 683 ◽  
Author(s):  
Lei Bai ◽  
Yuanqiao Wen ◽  
Chunxiang Shi ◽  
Yanfen Yang ◽  
Fan Zhang ◽  
...  

Precipitation serves as a crucial factor in the study of hydrometeorology, ecology, and the atmosphere. Gridded precipitation data are available from a multitude of sources including precipitation retrieved by satellites, radar, the output of numerical weather prediction models, and extrapolation by ground rain gauge data. Evaluating different types of products in ungauged regions with complex terrain will not only help researchers in applying scientific data, but also provide useful information that can be used to improve gridded precipitation products. The present study aims to evaluate comprehensively 12 precipitation datasets made by raw retrieved products, blended with rain gauge data, and blended multiple source datasets in multi-temporal scales in order to develop a suitable method for creating gridded precipitation data in regions with snow-dominated regions with complex terrain. The results show that the Multi-Source Weighted-Ensemble Precipitation (MSWEP), Global Satellite Mapping of Precipitation with Gauge Adjusted (GSMaP_GAUGE), Tropical Rainfall Measuring Mission (TRMM_3B42), Climate Prediction Center Morphing Technique blended with Chinese observations (CMORPH_SUN), and Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) can represent the spatial pattern of precipitation in arid/semi-arid and humid/semi-humid areas of the Qinghai-Tibet Plateau on a climatological spatial pattern. On interannual, seasonal, and monthly scales, the TRMM_3B42, GSMaP_GAUGE, CMORPH_SUN, and MSWEP outperformed the other products. In general, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN_CCS) has poor performance in basins of the Qinghai-Tibet Plateau. Most products overestimated the extreme indices of the 99th percentile of precipitation (R99), the maximal of daily precipitation in a year (Rmax), and the maximal of pentad accumulation of precipitation in a year (R5dmax). They were underestimated by the extreme index of the total number of days with daily precipitation less than 1 mm (dry day, DD). Compared to products blended with rain gauge data only, MSWEP blended with more data sources, and outperformed the other products. Therefore, multi-sources of blended precipitation should be the hotspot of regional and global precipitation research in the future.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1661 ◽  
Author(s):  
Mohd. Rizaludin Mahmud ◽  
Aina Afifah Mohd Yusof ◽  
Mohd Nadzri Mohd Reba ◽  
Mazlan Hashim

In this study, half-hourly Global Precipitation Mission (GPM) satellite precipitation data were downscaled to produce high-resolution daily rainfall data for tropical coastal micro-watersheds (100–1000 ha) without gauges or with rainfall data conflicts. Currently, daily-scale satellite rainfall downscaling techniques rely on rain gauge data as corrective and controlling factors, making them impractical for ungauged watersheds or watersheds with rainfall data conflicts. Therefore, we used high-resolution local orographic and vertical velocity data as proxies to downscale half-hourly GPM precipitation data (0.1°) to high-resolution daily rainfall data (0.02°). The overall quality of the downscaled product was similar to or better than the quality of the raw GPM data. The downscaled rainfall dataset improved the accuracy of rainfall estimates on the ground, with lower error relative to measured rain gauge data. The average error was reduced from 41 to 27 mm/d and from 16 to 12 mm/d during the wet and dry seasons, respectively. Estimates of localized rainfall patterns were improved from 38% to 73%. The results of this study will be useful for production of high-resolution satellite precipitation data in ungauged tropical micro-watersheds.


2019 ◽  
Vol 20 (12) ◽  
pp. 2347-2365 ◽  
Author(s):  
Ali Jozaghi ◽  
Mohammad Nabatian ◽  
Seongjin Noh ◽  
Dong-Jun Seo ◽  
Lin Tang ◽  
...  

Abstract We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multisensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation estimates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For comparative evaluation, true validation is carried out over the continental United States (CONUS) for 13–30 September 2015 and 7–9 October 2016. The hourly gauge data, radar-only QPE, and satellite QPE used are from the Hydrometeorological Automated Data System, Multi-Radar Multi-Sensor System, and Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), respectively. For radar–satellite fusion, conditional bias–penalized Fisher estimation is used. The reference merging technique compared is ordinary cokriging (OCK) used in the National Weather Service Multisensor Precipitation Estimator. It is shown that, beyond the reduction due to mean field bias (MFB) correction, both OCK and adaptive CBPCK additionally reduce the unconditional root-mean-square error (RMSE) of radar-only QPE by 9%–16% over the CONUS for the two periods, and that adaptive CBPCK is superior to OCK for estimation of hourly amounts exceeding 1 mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for September 2015 reduces the unconditional RMSE of the MFB-corrected radar by 4% and 6% over the entire and western half of the CONUS, respectively, but is inferior to the MFB-corrected radar for estimation of hourly amounts exceeding 7 mm. Adaptive CBPCK should hence be favored over OCK for estimation of significant amounts of precipitation despite larger computational cost, and the SCaMPR QPE should be used selectively in multisensor QPE.


Sign in / Sign up

Export Citation Format

Share Document