scholarly journals Applying ADDIE Model to Ideate Precision Medicine in a Polytechnic Biomedical Science Programme

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Wee Hong Woo

As a biomedical science programme at polytechnic aims to provide a sound foundation in the biological sciences, the onus is on the curriculum developer to see that the relevance and currency of the programme content are justifiably challenging and work-ready. In other words, the programme needs to prepare its students adequately well for the intended industry. Since the inception of Human Genome Project, the molecular paradigm has been evolving. A biomedical science student who is oblivious to the emerging trend in molecular techniques is very likely to be hearkened back to the yesteryears of technology and bewildered as precision medicine is becoming increasingly important. Using the ADDIE model as the instructional design model, this paper describes the roadmap for creating a molecular techniques module within a diploma programme that percolates with the concept of precision medicine.

1999 ◽  
Vol 25 (4) ◽  
pp. 479-541
Author(s):  
Allyn L. Taylor

The global Human Genome Project (HGP) promises dramatic advances in biomedical science and in identifying and treating diseases and illnesses that exact an enormous toll on people throughout the world. The HGP portends a conceptual revolution in health care: many foresee a new “predictive medicine” based on the development of genetic screening, testing and gene therapy.Although advances in genetic science create the potential for dramatic progress against disease in rich and poor states, they also pose profound national and global policy concerns, including the potential impact of the scientific developments on human rights and public health. The development of more precise genetic information raises the specter of genetic discrimination by public and private sectors in all nations with access to the new technologies. In addition, nations will grapple increasingly with the appropriate balance between screening for and treatment of genetic diseases in order to promote public health and protect individual rights to privacy and confidentiality. Genetic screening and services also raise human rights questions relating to equitable resource allocation and the protection of public health.


Healthcare system is experiencing a paradigm shift to precision medicine. Genotypic–phenotypic affiliation has been found to be a fundamental percept in biology after the completion of Human Genome project. The first era of precision medicine is now split into groups and subgroups, making it a meaningful strategy concurrently throughout the clinical phases of drug designing and development. It likewise recommends healthcare reshaping that suggests disease perceptivity or remedial treatment. Thus, translational genomics addresses bench to bedside approach to achieve P4 medicine (personalized, predictive, preventive, and participatory), i.e., early disease diagnosis and specifically designed treating plans instead of one size fits all1.


2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Prof. Dr. Anna Maria Lavezzi

It is with great pleasure that I write this editorial to welcome you to the first issue of this new International journal, “Pakistan Biomedical Journal” (PBMJ). The topics covered by the journal are certainly broad and interesting. Biomedical science is a collection of applied sciences that help us understand, research, and innovate within the _eld of healthcare. It includes disciplines like molecular biology, clinical virology, bioinformatics, and biomedical engineering, among others. It's designed to apply the biological sciences to advance not only individual health but also the area of public health. Biomedical Research can help health professions better understand things like the human body and cell biology, making advances in our understanding of epidemics, health initiatives, and human health in the age of longer life expectancy. It aids our understanding of infectious disease and provides research opportunities into some of our most troubling health issues. The journal will continue to publish high quality clinical and biomedical research in health and disease later in life. Peer review will remain a vital component of our assessment of submitted articles. I am very happy to have a team of excellent editors and editorial board members from the top international league covering in depth the related topics. They will ensure the highest standards of quality for the published manuscripts and, at the same time, keep the process time as short as possible. We hope to bring best researches in the _eld of biomedical sciences that may serve as a guideline in health awareness, understanding the mechanisms and its management in future. We definitely look forward to receiving your excellent studies to making PBMJ synonymous with high quality in the biomedical science domain.


2019 ◽  
Vol 14 (3) ◽  
pp. 99-111
Author(s):  
Katarzyna Maciejewska

Medycyna precyzyjna, która zajmuje się badaniem genezy chorób na podstawie DNA, zyskuje coraz większą popularność na świecie za sprawą dynamicznego rozwoju technologii sekwencjonowania materiału genetycznego. W roku 2003 został ukończony projekt poznania ludzkiego genomu (ang. Human Genome Project, HGP), który trwał 15 lat i który kosztował 2,7 miliarda dolarów. Obecnie koszt przeprowadzenia badania genomu wynosi około 1000 dolarów i trwa zaledwie od kilku godzin do kilku dni w zależności od wybranej technologii. W niniejszej pracy zostały opisane wybrane pojęcia związane z medycyną precyzyjną i zarządzaniem danymi w systemach ochrony zdrowia. Ze względu na znaczne obniżenie kosztów związanych z przeprowadzaniem testów genetycznych stały się one bardziej dostępne i mogą być brane pod uwagę w procesie diagnozowania i leczenia pacjentów. Omawiane techniki i metody generują dużą ilość danych medycznych, które powinny być zarządzane i wykorzystywane również w profilaktycznej opiece zdrowotnej.


2012 ◽  
Vol 136 (10) ◽  
pp. 1186-1189 ◽  
Author(s):  
Philip T. Cagle ◽  
Jeffrey Myers

Precision medicine is altering the traditional role of the surgical pathologist in caring for patients with lung cancer. Diagnosing specific cell type is now a foundation for selecting lung cancers for predictive-biomarker testing by molecular techniques. Using conventional techniques and familiar equipment, the surgical pathologist's role goes beyond this important step and will include screening for, and possibly diagnosis of, predictive biomarkers as we illustrate for one predictive biomarker. Pathologists should embrace the innovations described at the Houston Lung Symposium but must recognize that their traditional expertise will be an important component of precision medicine for the foreseeable future.


Author(s):  
Michael F. McGovern

Abstract Mendelian Inheritance in Man (MIM), a computerized catalogue of human genetic disorders authored and maintained by cardiologist and medical genetics pioneer Victor A. McKusick, played a major part in demarcating between a novel biomedical science and the eugenic projects of racial betterment which existed prior to its emergence. Nonetheless, it built upon prior efforts to systematize genetic knowledge tied to individuals and institutions invested in eugenics. By unpacking the process of digitizing a homespun cataloguing project and charting its development into an online database, this article aims to illuminate how the institution-building efforts of one individual created an ‘information order’ for accessing genetic information that tacitly shaped the norms and priorities of the field toward the pursuit of specific genes associated with discernible genetic disorders. This was not by design, but rather arose through negotiation with the catalogue's users; it accommodated further changes as biomedical research displaced the Mendelian paradigm. While great effort was expended toward making sequence data available to investigators during the Human Genome Project, MIM was largely taken for granted as a ‘legacy system’, McKusick's own labour of love. Drawing on recent histories of biomedical data, the article suggests that the bibliographical work of curation and translation is a central feature of value production in the life sciences meriting attention in its own right.


2021 ◽  
Vol 14 ◽  
pp. 251686572098856
Author(s):  
Mamta P Sumi ◽  
Bhawna Mahajan ◽  
Real Sumayya Abdul Sattar ◽  
Nimisha ◽  
Apurva ◽  
...  

Despite extensive clinical research and management protocols applied in the field of coronary artery diseases (CAD), it still holds the number 1 position in mortality worldwide. This indicates that we need to work on precision medicine to discover the diagnostic, therapeutic, and prognostic targets to improve the outcome of CAD. In precision medicine, epigenetic changes play a vital role in disease onset and progression. Epigenetics is the study of heritable changes that do not affect the alterations of DNA sequence in the genome. It comprises various covalent modifications that occur in DNA or histone proteins affecting the spatial arrangement of the DNA and histones. These multiple modifications include DNA/histone methylation, acetylation, phosphorylation, and SUMOylation. Besides these covalent modifications, non-coding RNAs—viz. miRNA, lncRNA, and circRNA are also involved in epigenetics. Smoking, alcohol, diet, environmental pollutants, obesity, and lifestyle are some of the prime factors affecting epigenetic alterations. Novel molecular techniques such as next-generation sequencing, chromatin immunoprecipitation, and mass spectrometry have been developed to identify important cross points in the epigenetic web in relation to various diseases. The studies regarding exploration of epigenetics, have led researchers to identify multiple diagnostic markers and therapeutic targets that are being used in different disease diagnosis and management. Here in this review, we will discuss various ground-breaking contributions of past and recent studies in the epigenetic field in concert with coronary artery diseases. Future prospects of epigenetics and its implication in CAD personalized medicine will also be discussed in brief.


Diseases ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 68
Author(s):  
James Trosko

Throughout the history of biological/medicine sciences, there has been opposing strategies to find solutions to complex human disease problems. Both empirical and deductive approaches have led to major insights and concepts that have led to practical preventive and therapeutic benefits for the human population. The classic definitions of “science” (to know) has been paired with the classic definition of technology (to do). One knew more as the technology developed, and that development was often based on science. In other words, one could do more if science could improve the technology. In turn, this made possible to know more science with improved technology. However, with the development of new technologies of today in biology and medicine, major advances have been made, such as the information from the Human Genome Project, genetic engineering techniques and the use of bioinformatic uses of sophisticated computer analyses. This has led to the renewed idea that Precision Medicine, while raising some serious ethical concerns, also raises the expectation of improved potential of risk predictions for prevention and treatment of various genetically and environmentally influenced human diseases. This new field Artificial Intelligence, as a major handmaiden to Precision Medicine, is significantly altering the fundamental means of biological discovery. However, can today’s fundamental premise of “Artificial Intelligence”, based on identifying DNA, as the primary nexus of human health and disease, provide the practical solutions to complex human diseases that involve the interaction of those genes with the broad spectrum of “environmental factors”? Will it be “precise” enough to provide practical solutions for prevention and treatments of diseases? In this “Commentary”, with the example of human carcinogenesis, it will be challenged that, without the integration of mechanistic and hypothesis-driven approaches with the “unbiased” empirical analyses of large numbers of data, the Artificial Intelligence approach with fall short.


Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 62 ◽  
Author(s):  
Ryuji Hamamoto ◽  
Masaaki Komatsu ◽  
Ken Takasawa ◽  
Ken Asada ◽  
Syuzo Kaneko

To clarify the mechanisms of diseases, such as cancer, studies analyzing genetic mutations have been actively conducted for a long time, and a large number of achievements have already been reported. Indeed, genomic medicine is considered the core discipline of precision medicine, and currently, the clinical application of cutting-edge genomic medicine aimed at improving the prevention, diagnosis and treatment of a wide range of diseases is promoted. However, although the Human Genome Project was completed in 2003 and large-scale genetic analyses have since been accomplished worldwide with the development of next-generation sequencing (NGS), explaining the mechanism of disease onset only using genetic variation has been recognized as difficult. Meanwhile, the importance of epigenetics, which describes inheritance by mechanisms other than the genomic DNA sequence, has recently attracted attention, and, in particular, many studies have reported the involvement of epigenetic deregulation in human cancer. So far, given that genetic and epigenetic studies tend to be accomplished independently, physiological relationships between genetics and epigenetics in diseases remain almost unknown. Since this situation may be a disadvantage to developing precision medicine, the integrated understanding of genetic variation and epigenetic deregulation appears to be now critical. Importantly, the current progress of artificial intelligence (AI) technologies, such as machine learning and deep learning, is remarkable and enables multimodal analyses of big omics data. In this regard, it is important to develop a platform that can conduct multimodal analysis of medical big data using AI as this may accelerate the realization of precision medicine. In this review, we discuss the importance of genome-wide epigenetic and multiomics analyses using AI in the era of precision medicine.


Sign in / Sign up

Export Citation Format

Share Document