scholarly journals Performance Trades for Multiantenna GNSS Multisensor Attitude Determination Systems

2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Nathan A. Tehrani ◽  
Jason N. Gross

We present various performance trades for multiantenna global navigation satellite system (GNSS) multisensor attitude estimation systems. In particular, attitude estimation performance sensitivity to various error sources and system configurations is assessed. This study is motivated by the need for system designers, scientists, and engineers of airborne astronomical and remote sensing platforms to better determine which system configuration is most suitable for their specific application. In order to assess performance trade-offs, the attitude estimation performance of various approaches is tested using a simulation that is based on a stratospheric balloon platform. For GNSS errors, attention is focused on multipath, receiver measurement noise, and carrier-phase breaks. For the remaining attitude sensors, different performance grades of sensors are assessed. Through a Monte Carlo simulation, it is shown that, under typical conditions, sub-0.1-degree attitude accuracy is available when using multiple antenna GNSS data only, but that this accuracy can degrade to degree level in some environments warranting the inclusion of additional attitude sensors to maintain the desired level of accuracy. Further, we show that integrating inertial sensors is more valuable whenever accurate pitch and roll estimates are critical.

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3586 ◽  
Author(s):  
Fan ◽  
Li ◽  
Cui ◽  
Lu

Robust and centimeter-level Real-time Kinematic (RTK)-based Global Navigation Satellite System (GNSS) positioning is of paramount importance for emerging GNSS applications, such as drones and automobile systems. However, the performance of conventional single-rover RTK degrades greatly in urban environments due to signal blockage and strong multipath. The increasing use of multiple-antenna/rover configurations for attitude determination in the above precise positioning applications, just as well, allows more information involved to improve RTK positioning performance in urban areas. This paper proposes a dual-antenna constraint RTK algorithm, which combines GNSS measurements of both antennas by making use of the geometric constraint between them. By doing this, the reception diversity between two antennas can be taken advantage of to improve the availability and geometric distribution of GNSS satellites, and what is more, the redundant measurements from a second antenna help to weaken the multipath effect on the first antenna. Particularly, an Ambiguity Dilution of Precision (ADOP)-based analysis is carried out to explore the intrinsic model strength for ambiguity resolution (AR) with different kinds of constraints. Based on the results, a Dual-Antenna with baseline VEctor Constraint algorithm (RTK) is developed. The primary advantages of the reported method include: 1) Improved availability and success rate of RTK, even if neither of the two single-antenna receivers can successfully solve the AR problem; and 2) reduced computational burden by adopting the concept of measurement projection. Simulated and real data experiments are performed to demonstrate robustness and precision of the algorithm in GNSS-challenged environments.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7296
Author(s):  
Guanqing Li ◽  
Lasse Klingbeil ◽  
Florian Zimmermann ◽  
Shengxiang Huang ◽  
Heiner Kuhlmann

Immersed tunnel elements need to be exactly controlled during their immersion process. Position and attitude of the element should be determined quickly and accurately to navigate the element from the holding area to the final location in the tunnel trench. In this paper, a newly-developed positioning and attitude determination system, integrating a 3-antenna Global Navigation Satellite System (GNSS) system, an inclinometer and a range-measurement system, is presented. The system is designed to provide the absolute position of both ends of the element with sufficient accuracy in real time. Special attention in the accuracy analysis is paid to the influence of GNSS multipath error and sound speed profile. Simulations are conducted to illustrate the performance of the system in different scenarios. If both elements are very close, the accuracies of the system are higher than 0.02 m in the directions perpendicular to and along the tunnel axis.


2020 ◽  
Vol 12 (5) ◽  
pp. 747
Author(s):  
Peng Zhang ◽  
Yinzhi Zhao ◽  
Huan Lin ◽  
Jingui Zou ◽  
Xinzhe Wang ◽  
...  

The global navigation satellite system (GNSS)-based attitude determination system has attracted more and more attention with the advantages of having simplified algorithms, a low price and errors that do not accumulate over time. However, GNSS signals may have poor quality or lose lock in some epochs with the influence of signal fading and the multipath effect. When the direct attitude determination method is applied, the primary baseline may not be available (ambiguity is not fixed), leading to the inability of attitude determination. With the gradual popularization of low-cost receivers, making full use of spatial redundancy information of multiple antennas brings new ideas to the GNSS-based attitude determination method. In this paper, an attitude angle conversion algorithm, selecting an arbitrary baseline as the primary baseline, is derived. A multi-antenna attitude determination method based on primary baseline switching is proposed, which is performed on a self-designed embedded software and hardware platform. The proposed method can increase the valid epoch proportion and attitude information. In the land vehicle test, reference results output from a high-accuracy integrated navigation system were used to evaluate the accuracy and reliability. The results indicate that the proposed method is correct and feasible. The valid epoch proportion is increased by 16.2%, which can effectively improve the availability of attitude determination. The RMS of the heading, pitch and roll angles are 0.52°, 1.25° and 1.16°.


2017 ◽  
Vol 71 (1) ◽  
pp. 134-150
Author(s):  
Haiying Liu ◽  
Lei Xu ◽  
Xiaolin Meng ◽  
Xibei Chen ◽  
Junyi Li

Global Navigation Satellite System (GNSS) attitude determination and positioning play an important role in many navigation applications. However, the two GNSS-based problems are usually treated separately. This ignores the constraint information of the GNSS antenna array and the accuracy is limited. To improve the performance of navigation, an integrated attitude and position determination method based on an affine constraint model is presented. In the first part, the GNSS array model and affine constrained attitude determination method are compared with the unconstrained methods. Then the integrated attitude and position determination method is presented. The performance of the proposed method is tested with a series of static data and dynamic experimental GNSS data. The results show that the proposed method can improve the success rate of ambiguity resolution to further improve the accuracy of attitude determination and relative positioning compared to the unconstrained methods.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3438
Author(s):  
Flavia Causa ◽  
Giancarmine Fasano

This paper discusses the exploitation of a cooperative navigation strategy for improved in-flight estimation of inertial sensors biases on board unmanned aerial vehicles. The proposed multi-vehicle technique is conceived for a “chief” Unmanned Aerial Vehicle (UAV) and relies on one or more deputy aircrafts equipped with Global Navigation Satellite System (GNSS) antennas for differential positioning which also act as features for visual tracking. Combining carrier-phase differential GNSS and visual estimates, it is possible to retrieve accurate inertial-independent attitude information, thus potentially enabling improved bias estimation. Camera and carrier-phase differential GNSS measurements are integrated within a 15 states extended Kalman filter. Exploiting an ad hoc developed numerical environment, the paper analyzes the performance of the cooperative approach for inertial biases estimation as a function of number of deputies, formation geometry and distances, and absolute and relative dynamics. It is shown that exploiting two deputies it is possible to improve biases estimation, while a single deputy can be effective if changes of relative geometry and dynamics are also considered. Experimental proofs of concept based on two multi-rotors flying in formation are presented and discussed. The proposed framework is applicable beyond the domain of small UAVs.


Author(s):  
Yanlei Gu ◽  
Li-Ta Hsu ◽  
Shunsuke Kamijo

Accurate vehicle localization technologies are significant for current onboard navigation systems and future autonomous vehicles. More specifically, positioning accuracy is expected at the submeter level. This paper presents an accurate vehicle self-localization system and evaluates the proposed system in different classes of urban environments. The developed system adopts an innovative global navigation satellite system (GNSS) positioning method as the key technique. The GNSS positioning method can improve the positioning error by reducing the effects of multipath interference and non-line-of-sight errors with the aid of a three-dimensional map. To improve positioning accuracy further, the vehicle localization system integrates the GNSS positioning technique with inertial sensors and vision sensors by considering the characteristics of each sensor. The inertial sensors represent vehicle movement with heading direction and vehicle speed. The vision sensor is used to recognize the position change relative to lane markings on the road surface. Those techniques and sensors collaborate to provide an accurate position in the global coordinate system. To verify the effectiveness and stability of the proposed system, a series of tests was conducted in one of the most challenging urban cities, Tokyo. The experiment results demonstrate that the proposed system can achieve submeter accuracy for the positioning error mean and has a 90% correct lane rate in the localization.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 64
Author(s):  
Yinzhi Zhao ◽  
Jingui Zou ◽  
Peng Zhang ◽  
Jiming Guo ◽  
Xinzhe Wang ◽  
...  

The global navigation satellite system (GNSS)-based multi-antenna attitude determination method has the advantages of a simple algorithm and no error accumulation with time in long endurance operation. However, it is sometimes difficult to simultaneous obtain the fixed solutions of all antennas in vehicle attitude determination. If float or incorrect fixed solutions are used, precision and reliability of attitude cannot be guaranteed. Given this fact, a baseline-constrained ambiguity function method (BCAFM) based on a self-built four GNSS antennas hardware platform is proposed. The coordinates obtained by BCAFM can replace the unreliable real-time kinematic (RTK) float or incorrect fixed solutions, so as to assist the direct method for attitude determination. In the proposed BCAFM, the baseline constraint is applied to improve search efficiency (searching time), and the ambiguity function value (AFV) formula is optimized to enhance the discrimination of true peak. The correctness of the proposed method is verified by vehicle attitude determination results and baseline length difference. Experimental results demonstrate that the function values of error peaks are reduced, and the only true peak can be identified accurately. The valid epoch proportion increases by 14.95% after true peak coordinates are used to replace the GNSS-RTK float or incorrect fixed solutions. The precision of the three attitude angles is 0.54°, 1.46°, and 1.15°, respectively. Meanwhile, the RMS of baseline length difference is 3.8mm.


2021 ◽  
Vol 13 (23) ◽  
pp. 4845
Author(s):  
Mingkui Wu ◽  
Shuai Luo ◽  
Wang Wang ◽  
Wanke Liu

Global navigation satellite system (GNSS)-based attitude determination has been widely applied in a variety of fields due to its high precision, no error accumulation, low power consumption, and low cost. Recently, the emergence of common-clock receivers and construction of GNSS systems have brought new opportunities for high-precision GNSS-based attitude determination. In this contribution, we focus on evaluating the performance of the BeiDou regional navigation satellite system (BDS-2)/BeiDou global navigation satellite system (BDS-3)/Global Positioning System (GPS)/Galileo navigation satellite system (Galileo) attitude determination based on the single-differenced (SD) model with a common-clock receiver. We first investigate the time-varying characteristics of BDS-2/BDS-3/GPS/Galileo line bias (LB) with two different types of common-clock receivers. The results have confirmed that both the phase and code LBs are relatively stable in the time domain once the receivers have started. However, the phase LB is expected to change to an arbitrary value after each restart of the common-clock receivers. For the first time, it is also found that the phase LBs of overlapping frequencies shared by different GNSS systems are identical. Then, we primarily evaluated the performance of BDS-2/BDS-3/GPS/Galileo precise relative positioning and attitude determination based on the SD model with a common-clock receiver, using a static dataset collected at Wuhan. Experimental results demonstrated that, compared with the double-differenced (DD) model, the SD model can deliver a comparable root–mean–square (RMS) error of yaw but a significantly smaller RMS error of pitch, whether for BDS-2, BDS-3, GPS, or Galileo alone or a combination of them. The improvements of pitch accuracy are approximately 20.8–47.5% and 40.7–57.5% with single- and dual-frequency observations, respectively. Additionally, BDS-3 can deliver relatively superior positioning and attitude accuracy with respect to GPS and Galileo, due to its better geometry. The three-dimensional positioning and attitude (including yaw and pitch) accuracy for both the DD and SD models can be remarkably improved by the BDS-2, BDS-3, GPS, and Galileo combination with respect to a single system alone.


Sign in / Sign up

Export Citation Format

Share Document