scholarly journals Embedded FPGA Design for Optimal Pixel Adjustment Process of Image Steganography

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Chiung-Wei Huang ◽  
Changmin Chou ◽  
Yu-Che Chiu ◽  
Cheng-Yuan Chang

We propose a prototype of field programmable gate array (FPGA) implementation for optimal pixel adjustment process (OPAP) algorithm of image steganography. In the proposed scheme, the cover image and the secret message are transmitted from a personal computer (PC) to an FPGA board using RS232 interface for hardware processing. We firstly embed k-bit secret message into each pixel of the cover image by the last-significant-bit (LSB) substitution method, followed by executing associated OPAP calculations to construct a stego pixel. After all pixels of the cover image have been embedded, a stego image is created and transmitted from FPGA back to the PC and stored in the PC. Moreover, we have extended the basic pixel-wise structure to a parallel structure which can fully use the hardware devices to speed up the embedding process and embed several bits of secret message at the same time. Through parallel mechanism of the hardware based design, the data hiding process can be completed in few clock cycles to produce steganography outcome. Experimental results show the effectiveness and correctness of the proposed scheme.

2020 ◽  
Author(s):  
Abdulkarem Almawgani ◽  
Adam Alhawari ◽  
Wlaed Alarashi ◽  
Ali Alshwal

Abstract Digital images are commonly used in steganography due to the popularity of digital image transfer and exchange through the Internet. However, the tradeoff between managing high capacity of secret data and ensuring high security and quality of stego image is a major challenge. In this paper, a hybrid steganography method based on Haar Discrete Wavelet Transform (HDWT), Lempel Ziv Welch (LZW) algorithm, Genetic Algorithm (GA), and the Optimal Pixel Adjustment Process (OPAP) is proposed. The cover image is divided into non-overlapping blocks of nxn pixels. Then, the HDWT is used to increase the robustness of the stego image against attacks. In order to increase the capacity for, and security of, the hidden image, the LZW algorithm is applied on the secret message. After that, the GA is employed to give the encoded and compressed secret message cover image coefficients. The GA is used to find the optimal mapping function for each block in the image. Lastly, the OPAP is applied to reduce the error, i.e., the difference between the cover image blocks and the stego image blocks. This step is a further improvement to the stego image quality. The proposed method was evaluated using four standard images as covers and three types of secret messages. The results demonstrate higher visual quality of the stego image with a large size of embedded secret data than what is generated by already-known techniques. The experimental results show that the information-hiding capacity of the proposed method reached to 50% with high PSNR (52.83 dB). Thus, the herein proposed hybrid image steganography method improves the quality of the stego image over those of the state-of-the-art methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xinliang Bi ◽  
Xiaoyuan Yang ◽  
Chao Wang ◽  
Jia Liu

Steganography is a technique for publicly transmitting secret information through a cover. Most of the existing steganography algorithms are based on modifying the cover image, generating a stego image that is very similar to the cover image but has different pixel values, or establishing a mapping relationship between the stego image and the secret message. Attackers will discover the existence of secret communications from these modifications or differences. In order to solve this problem, we propose a steganography algorithm ISTNet based on image style transfer, which can convert a cover image into another stego image with a completely different style. We have improved the decoder so that the secret image features can be fused with style features in a variety of sizes to improve the accuracy of secret image extraction. The algorithm has the functions of image steganography and image style transfer at the same time, and the images it generates are both stego images and stylized images. Attackers will pay more attention to the style transfer side of the algorithm, but it is difficult to find the steganography side. Experiments show that our algorithm effectively increases the steganography capacity from 0.06 bpp to 8 bpp, and the generated stylized images are not significantly different from the stylized images on the Internet.


2020 ◽  
Vol 9 (1) ◽  
pp. 2042-2045

Nowadays, the information security has been the key factor in communications, computer systems, electronic commerce and data sharing. One of the well-known methods for procuring the security of shared information using carrier files is steganography. The carrier file can be discrete such as image, text, audio and video etc. Digital images are the most commonly used format among those due to the high capacity and availability frequency. The hidden data is stored in an indistinct carrier in image steganography, i.e the digital image is used as a cover image to mask the secret message known as stego image. Cryptography can be then adapted for increasing the security of the stego image. A zig-zag MSB-LSB slicing based steganographic algorithm is proposed in this paper for concealing a secret image in a cover image. Power report and device utilization summary of the algorithm is calculated and the output is demonstrated on the VGA screen using BASYS3 Field Programmable Gate Array (FPGA).


2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Manish Sharma ◽  
Prof. Sonu Lal

Conventional distributed arithmetic (DA) is popular in field programmable gate array (FPGA) design, and it features on-chip ROM to achieve high speed and regularity. In this paper, we describe high speed area efficient 1-D discrete wavelet transform (DWT) using 9/7 filter based new efficient distributed arithmetic (NEDA) Technique. Being area efficient architecture free of ROM, multiplication, and subtraction, NEDA can also expose the redundancy existing in the adder array consisting of entries of 0 and 1. This architecture supports any size of image pixel value and any level of decomposition. The parallel structure has 100% hardware utilization efficiency.


Author(s):  
Oluwaseun M. Alade ◽  
Elizabeth A. Amusan ◽  
Oluyinka T. Adedeji ◽  
Oluwaseun O. Alo

Steganography deals with the ways of hiding communicated data in such a way that it remains confidential. Finding best position inside cover image to embed text message, maintaining a reasonable trade-off between security, robustness, higher bit embedding rate and imperceptibility are some of the challenges of steganography system. Hence, this paper presents firefly algorithm for finding best positions inside cover image in order to embed text message into cover image using Pixel Value Differencing (PVD) technique. Four different cover image was used. Experimental result showed the cover image with selected location using firefly algorithm as well as the stego image using PVD technique. The stego image was evaluated using Peak Signal to Noise Ratio (PSNR) and Mean square Error (MSE).  Firefly Algorithm with PVD technique produced a promising result for image steganography.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1394 ◽  
Author(s):  
Jiaohua Qin ◽  
Jing Wang ◽  
Yun Tan ◽  
Huajun Huang ◽  
Xuyu Xiang ◽  
...  

Traditional image steganography needs to modify or be embedded into the cover image for transmitting secret messages. However, the distortion of the cover image can be easily detected by steganalysis tools which lead the leakage of the secret message. So coverless steganography has become a topic of research in recent years, which has the advantage of hiding secret messages without modification. But current coverless steganography still has problems such as low capacity and poor quality .To solve these problems, we use a generative adversarial network (GAN), an effective deep learning framework, to encode secret messages into the cover image and optimize the quality of the steganographic image by adversaring. Experiments show that our model not only achieves a payload of 2.36 bits per pixel, but also successfully escapes the detection of steganalysis tools.


Author(s):  
Sabyasachi Pramanik ◽  
R P Singh ◽  
Ramkrishna Ghosh

<p>Steganography is data hiding technique in internet. Here we send CAPTCHA codes within a cover image using Image steganography. CAPTCHA are the crazy codes. They are used in human response test. The word is actually an acronym for: "<strong>C</strong>ompletely <strong>A</strong>utomated <strong>P</strong>ublic <strong>T</strong>uring test to tell <strong>C</strong>omputers and <strong>H</strong>umans <strong>A</strong>part". It is a type of challenge–response test used in computing to determine whether or not the user is a human. Websites implement CAPTCHA codes into their registration processes due to spam. This is the utility of CAPTCHA codes. Here we generate CAPTCHA codes and later send them in an encrypted version. So, actually CAPTCHA codes are embedded into cover image with an encrypted form resulting stego image and thus attackers cannot fetch the actual CAPTCHA resulting in a secured transmission of confidential data using image steganography.</p>


Author(s):  
Ari Moesriami Barmawi ◽  
Deden Pradeka

Recently, information exchange using internet is increasing, such that information security is necessary for securing confidential information because it is possible to eavesdrop the information. There are several methods for securing the exchanged information such as was proposed by Rejani et al. Rejani’s method can be noiseless in low capacity but noisy in high capacity. In the case of high capacity, it will raise suspicion. This research proposed a method based on histogram and pixel pattern for keeping the stego image noiseless while still keeping the capacity high. Secret information can be embedded into the cover by evaluating the histogram and map the characters used in the secret message to the consecutive intensity in the cover image histogram. The map of the characters is sent to the recipient securely. Using the proposed method there is no pixel value changes during the embedding process. Based on the result of the experiments, it is shown that in noiseless condition, the proposed method has higher embedding capacity than Rejani’s especially when using cover image with sizes larger than 128 × 128. Thus, in noiseless condition the embedding capacity using the proposed method is higher than Rejani’s method in noiseless condition.  


Steganography is one of the commanding and commonly used methods for embedding data. Realizing steganography in hardware supports to speed up steganography. This work realizesthe novel approach for generation of Key, for hiding and encoding processes of image steganography using LSB and HAAR DWT.The data embedding process is realized with seven segment display pattern as a secret key with various sizes using HAAR DWT and LSB. Maximum hiding effectiveness is also attained from this work. The same is implemented in hardware using reconfigurable device Field programmable gate array to improve the speed, area and power. The proposed work is also evaluated improved PSNR using MATLAB.


2020 ◽  
Vol 17 (12) ◽  
pp. 5279-5295
Author(s):  
S. Jahnavi ◽  
C. Nandini

With increase in growth of data and digital threat, demand of securing the data communicated over the internet is an essential play in the digital world. In the vision of digitalizing services with the next generation of security to the sensitive data transmitted over the internet by hiding the existence of the data using next generation cryptography by fusing cryptography techniques is one the major technique adopted. With this the aim in traditional Least Significant Bit (LSB) is one of the widely used technique. Where the secret message or image are placed in the cover image in the least significant bits of RGB Channels resulting in a stego image. But the drawback is, on suspecting the differences in the pixels of original and stegoimage in the secret data embedded can be guessed and extracted by attacker. The Proposed visual crypto-mask steganography method overcomes this drawback and support good payload capacity with multi modal approach of embedding biometrics, resulting in ∞ PSNR. The authenticated person face and fingerprint information is transmitted in a cover image and mask image (magic sheet) using proposed steganography and is combined with Random Visual Crypto Technique. Which results in enhanced and advance visual crypto steganography secured model in communicating sensitive (biometric features) information over the internet. Where the complete information cannot be extracted using only cover image. Mask image (magic sheet) is used along with cover image that reveals the secret data in the receiving end.


Sign in / Sign up

Export Citation Format

Share Document