scholarly journals Effect of Acupuncture at LR3 on Cerebral Glucose Metabolism in a Rat Model of Hypertension: A 18F-FDG-PET Study

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jing Li ◽  
Yumei Wang ◽  
Kejie He ◽  
Chong Peng ◽  
Peilong Wu ◽  
...  

Our objective was to investigate the effect of acupuncture at LR3 on cerebral glucose metabolism in spontaneously hypertensive rats (SHRs). We used 18F-2-fluoro-deoxy-D-glucose positron emission tomography (18F-FDG-PET) to examine the effects of acupuncture at LR3 on cerebral glucose metabolism in SHRs. SHRs were randomly allocated to receive no treatment (SHR group), needling at LR3 (SHR + LR3 group), or sham needling (SHR + sham group). Rats received 10 min acupuncture once per day for 7 days and were compared to normotensive Wistar Kyoto (WKY) rats. Blood pressure (BP) measurement and PET were performed after the first needling and the 7-day treatment period. BP was lower in the SHR + LR3 group compared to the other SHR groups between 30 and 60 min after the first needling and at 24 and 48 h after the 7-day treatment period. Glucose metabolism in the motor, sensory, and visual cortices was decreased in SHR group compared to WKY group. Needling at LR3 was associated with decreased glucose metabolism in the dorsal thalamus, thalamus, and hypothalamus and with increased metabolism in the cerebellar anterior and posterior lobes, medulla oblongata, and sensory cortex compared to the SHR group. These findings suggest that LR3 acupuncture improves hypertension through a mechanism involving altered brain activation in SHRs.

2015 ◽  
Vol 123 (6) ◽  
pp. 1546-1554 ◽  
Author(s):  
Koji Yoshida ◽  
Kuniaki Ogasawara ◽  
Hiroaki Saura ◽  
Hideo Saito ◽  
Masakazu Kobayashi ◽  
...  

OBJECT Cognitive function is often improved or impaired after carotid endarterectomy (CEA) for patients with cerebral hemodynamic impairment. Cerebral glucose metabolism measured using positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) correlates with cognitive function in patients with neurodegenerative diseases. The present study aimed to determine whether postoperative changes in cerebral glucose metabolism are associated with cognitive changes after CEA. METHODS In patients who were scheduled to undergo CEA for ipsilateral internal carotid artery (ICA) stenosis (≥ 70% narrowing), cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) to acetazolamide were assessed preoperatively using brain perfusion single-photon emission computed tomography (SPECT). CBF measurement using SPECT was also performed immediately after CEA. For patients with reduced preoperative CVR to acetazolamide in the cerebral hemisphere ipsilateral to surgery, cerebral glucose metabolism was assessed using FDG-PET before surgery and 3 months after surgery and was analyzed using 3D stereotactic surface projection. Neuropsychological testing was also performed preoperatively and 3 months postoperatively. RESULTS Twenty-two patients with reduced preoperative CVR to acetazolamide successfully underwent FDG-PET studies and neuropsychological testing before and after CEA. Seven, 9, and 6 patients were defined as showing improved, unchanged, and impaired postoperative cognition, respectively, based on the neuropsychological assessments. The cortical area with increased postoperative glucose metabolism was greater in patients with improved postoperative cognition than in those with unchanged (p < 0.001) or impaired (p < 0.001) postoperative cognition. The cortical area with decreased postoperative glucose metabolism was greater in patients with impaired postoperative cognition than in those with improved (p < 0.001) or unchanged (p < 0.001) postoperative cognition. All 7 patients with improved cognition exhibited postoperative hemispheric increases in glucose metabolism, while 5 of the 6 patients with impaired cognition exhibited postoperative hemispheric decreases in glucose metabolism. Brain perfusion SPECT revealed that the latter 6 patients experienced postoperative cerebral hyperperfusion, and 2 of the 6 patients exhibited cerebral hyperperfusion syndrome. The cortical area with decreased postoperative glucose metabolism in these 2 patients was greater than that in other patients. CONCLUSIONS Postoperative changes in cerebral glucose metabolism, as measured using FDG-PET, are associated with cognitive improvement and impairment after CEA.


2019 ◽  
Vol 37 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Jing Li ◽  
Chong Peng ◽  
Dongjian Lai ◽  
Kejie He ◽  
Yumei Wang ◽  
...  

Objective: The aim of this study was to explore the effect of acupuncture stimulation at KI3 on brain glucose metabolism in spontaneously hypertensive rats (SHRs). Methods: Brain glucose metabolism in SHRs after acupuncture stimulation at KI3 was detected using 18F-2-fluorodeoxy-D-glucose positron emission tomography (18F-FDG-PET). SHRs were randomly divided into three groups: no treatment (SHR group); acupuncture at KI3 (KI3 group); and sham acupuncture (Sham group). Wistar Kyoto (WKY) rats were used as a normal blood pressure (BP) control group. Rats were subjected to 10 min of acupuncture once a day for 7 days. BP and positron emission tomography–computed tomography (PET-CT) were measured after the first acupuncture session and after 7 days of treatment. Results: The results showed that BP was lower in the KI3 group than in the SHR group, both 30–60 min after the first acupuncture session and 24–48 h after the 7-day treatment. Compared with the WKY group, the SHR group had lower glucose metabolism in the motor cortex, sensory cortex, basal ganglia, corpus callosum, caudate putamen, and visual cortex. Compared with the untreated/sham-treated SHR control groups, cerebral glucose metabolism was lower in the medulla oblongata, thalamus, dorsal thalamus, orbital cortex, and hypothalamus after acupuncture at KI3, while it was higher in the olfactory cortex and inferior phrenic muscle. Conclusion: Our results show that, in SHRs, needling at KI3 reduces high BP, most likely by altering the activation of cerebral regions.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Julien Delrieu ◽  
Thierry Voisin ◽  
Laure Saint-Aubert ◽  
Isabelle Carrie ◽  
Christelle Cantet ◽  
...  

Abstract Background The Multidomain Alzheimer Preventive Trial (MAPT) was designed to assess the efficacy of omega-3 fatty acid supplementation, multidomain intervention (MI), or a combination of both on cognition. Although the MAPT study was negative, an effect of MI in maintaining cognitive functions compared to placebo group was showed in positive amyloid subjects. A FDG PET study (MAPT-NI) was implemented to test the impact of MI on brain glucose metabolism. Methods MAPT-NI was a randomized, controlled parallel-group single-center study, exploring the effect of MI on brain glucose metabolism. Participants were non-demented and had memory complaints, limitation in one instrumental activity of daily living, or slow gait. Participants were randomly assigned (1:1) to “MI group” or “No MI group.” The MI consisted of group sessions focusing on 3 domains: cognitive stimulation, physical activity, nutrition, and a preventive consultation. [18F]FDG PET scans were performed at baseline, 6 months, and 12 months, and cerebral magnetic resonance imaging scans at baseline. The primary objective was to evaluate the MI effect on brain glucose metabolism assessed by [18F]FDG PET imaging at 6 months. The primary outcome was the quantification of regional metabolism rate for glucose in cerebral regions involved early in Alzheimer disease by relative semi-quantitative SUVr (FDG-based AD biomarker). An exploratory voxel-wise analysis was performed to assess the effect of MI on brain glucose metabolism without anatomical hypothesis. Results The intention-to-treat population included 67 subjects (34 in the MI group and 33 in the No MI group. No significant MI effect was observed on primary outcome at 6 months. In the exploratory voxel-wise analysis, we observed a difference in favor of MI group on the change of cerebral glucose metabolism in limbic lobe (right hippocampus, right posterior cingulate, left posterior parahippocampal gyrus) at 6 months. Conclusions MI failed to show an effect on metabolism in FDG-based AD biomarker, but exploratory analysis suggested positive effect on limbic system metabolism. This finding could suggest a delay effect of MI on AD progression. Trial registration ClinicalTrials.gov Identifier, NCT01513252.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Koichi Miyazaki ◽  
Kohei Hanaoka ◽  
Hayato Kaida ◽  
Yasutaka Chiba ◽  
Kazunari Ishii

Abstract Background Decreased cerebral glucose metabolism has been reported in idiopathic normal pressure hydrocephalus (iNPH). However, the timing of appearance in the preclinical stage of iNPH remains unknown. Herein, we evaluated the changes in regional cerebral glucose metabolism with respect to the characteristic morphologic features of iNPH. Methods We performed a cross-sectional study in > 2000 elderly patients who received a whole body 18F-fluorodeoxyglucose-positron emission tomography/computed tomography scanning and recruited subjects with clinical and preclinical iNPH. We included 12 subjects with iNPH, 32 subjects with asymptomatic ventriculomegaly with features of iNPH on magnetic resonance imaging (AVIM), and 33 subjects with preclinical morphologic features of DESH (PMD). We previously reported that iNPH develops in the order of PMD (asymptomatic subjects with incomplete DESH), AVIM (asymptomatic subjects with DESH), and iNPH (symptomatic subjects with DESH). We measured the median regional standardized uptake value ratio (SUVR) on 18F-fluorodeoxyglucose-positron emission tomography/computed tomography images between the three groups and compared them with background-matched normal controls in the frontal lobes, temporal lobes, medial parietal lobes, striata, and thalami. Results In the frontal and temporal lobes, the SUVR distributions of the PMD, AVIM, and PMD groups were significantly lower than for each NC (p < 0.05 for all). In the medial parietal lobes, the SUVR distributions were significantly higher in PMD and AVIM groups (p < 0.05 for all). In the thalami and striata, the SUVR distributions were significantly lower in the iNPH group (p < 0.05 for all). Conclusions Changes in brain glucose metabolism in the cortices are observed in preclinical iNPH, while metabolic decline in the basal ganglia is only detected in clinical iNPH.


Author(s):  
W.R. Wayne Martin ◽  
Michael R. Hayden

ABSTRACT:The development of positron emission tomography (PET) has enabled us to perform in vivo measurements of certain aspects of regional cerebral function. Regional cerebral glucose metabolism may be readily quantified with [18F] fluoro-2-deoxyglucose (FDG) and presynaptic dopaminergic function may be studied with the labelled dopa analog 6-[18F] fluoro-L-dopa. We have applied a model to the analysis of 6-FD/PET data with which in vivo age-related changes in dopaminergic function may be demonstrated in normal subjects. With this technique, we have studied a series of asymptomatic MPTP-exposed subjects and have shown evidence of subclinical nigrostriatal pathway damage. Studies of regional cerebral glucose metabolism with FDG in early Huntington's disease have shown a characteristic impairment in caudate function which precedes the development of caudate atrophy. In addition, some asymptomatic individuals who are at risk for HD have caudate hypometabolism. We feel that, at the present time, PET provides information which is complementary to the clinical examination in establishing a diagnosis of HD. In the future these studies may also help in the investigation of at risk individuals


1988 ◽  
Vol 8 (4) ◽  
pp. 502-512 ◽  
Author(s):  
Elsa J. Bartlett ◽  
Jonathan D. Brodie ◽  
Alfred P. Wolf ◽  
David R. Christman ◽  
Eugene Laska ◽  
...  

Positron emission tomography with 11C-2-deoxyglucose was used to determine the test-retest variability of regional cerebral glucose metabolism in 22 young normal right-handed men scanned twice in a 24-h period under baseline (resting) conditions. To assess the effects of scan order and time of day on variability, 12 subjects were scanned in the morning and afternoon of the same day (a.m.-p.m.) and 10 in the reverse order (p.m.-a.m.) with a night in between. The effect of anxiety on metabolism was also assessed. Seventy-three percent of the total subject group showed changes in whole brain metabolism from the first to the second measurement of 10% or less, with comparable changes in various cortical and subcortical regions. When a scaling factor was used to equate the whole brain metabolism in the two scans for each individual, the resulting average regional changes for each group were no mote than 1%. This suggests that the proportion of the whole brain metabolism utilized regionally is stable in a group of subjects over time. Both groups of subjects had lower morning than afternoon metabolism, but the differences were slight in the p.m.-a.m. group. One measure of anxiety (pulse at fun 1) was correlated with run 1 metabolism and with the percentage of change from run 1 to run 2. No significant run 2 correlations were observed. This is the first study to measure test-retest variability in cerebral glucose metabolism in a large sample of young normal subjects. It demonstrates that the deoxyglucose method yields low Intrasubject variability and high stability over a 24-h period.


1993 ◽  
Vol 11 (11) ◽  
pp. 2101-2111 ◽  
Author(s):  
R L Wahl ◽  
K Zasadny ◽  
M Helvie ◽  
G D Hutchins ◽  
B Weber ◽  
...  

PURPOSE We assessed the feasibility of noninvasive metabolic monitoring of cancer chemohormonotherapy using sequential quantitative positron emission tomographic (PET) scans of tumor glucose metabolism with the glucose analog 2-[18F]-fluoro-2-deoxy-D-glucose (FDG). PATIENTS AND METHODS Eleven women with newly diagnosed primary breast cancers larger than 3 cm in diameter beginning a chemohormonotherapy program underwent a baseline and four follow-up quantitative PET scans during the first three cycles of treatment (days 0 to 63). Tumor response was sequentially determined clinically, radiographically, and then pathologically after nine treatment cycles. RESULTS Eight patients had partial or complete pathologic responses. Their maximal tumor uptake of FDG assessed by PET decreased promptly with treatment to the following: day 8, 78 +/- 9.2% (P < .03); day 21, 68.1 +/- 7.5% (P < .025); day 42, 60 +/- 5.1% (P < .001); day 63, 52.4 +/- 4.4% (P < .0001) of the basal values. Tumor diameter did not decrease significantly during this period through 63 days. Prompt decreases in the FDG influx rate (K) from basal levels (from .019 to .014 mL/cm3/min) after 8 days of treatment (P < .02) and in the estimated rate of FDG phosphorylation to FDG-6-phosphate (k3) from .055 to .038 min-1 after 8 days of treatment (P < .02) to .029 +/- .004 min-1 at 21 days) (P < .02) were observed. Three nonresponding patients had no significant decrease in tumor uptake of FDG (81 +/- 18% of basal value), influx rate (.015 to .012 mL/cm3/min), or tumor size (81 +/- 12% of basal diameter) comparing basal versus 63-day posttreatment values. CONCLUSION Quantitative FDG PET scans of primary breast cancers showed a rapid and significant decrease in tumor glucose metabolism after effective treatment was initiated, with the reduction in metabolism antedating any decrement in tumor size. No significant decrease in FDG uptake (SUV) after three cycles of treatment was observed in the nonresponding patients. FDG PET scanning has substantial promise as an early noninvasive metabolic marker of the efficacy of cancer treatment.


2021 ◽  
Vol 18 ◽  
Author(s):  
Amir Ashraf-Ganjouei ◽  
Kamyar Moradi ◽  
Shahriar Faghani ◽  
AmirHussein Abdolalizadeh ◽  
Mohammadreza Khomeijani-Farahani ◽  
...  

Background: Mild cognitive impairment (MCI) is a state between normal cognition and dementia. However, MCI diagnosis does not necessarily guarantee the progression to dementia. Since no previous study investigated brain positron emission tomography (PET) imaging of MCI-- to-normal reversion, we provided PET imaging of MCI-to-normal reversion using the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Methods: We applied comprehensive neuropsychological criteria (NP criteria), consisting of mem- ory, language, and attention/executive function domains, to include patients with a baseline diagno- sis of MCI (n=613). According to the criteria, the year 1 status of the patients was categorized into three groups (reversion: n=105, stable MCI: n=422, conversion: n=86). Demographic, neuropsycho- logical, genetic, CSF, and cognition biomarker variables were compared between the groups. Addi- tionally, after adjustment for confounding variables, the deposition pattern of amyloid-β and cere- bral glucose metabolism were compared between three groups via AV45- and FDG-PET modali- ties, respectively. Results: MCI reversion rate was 17.1% during one year of follow-up. The reversion group had the lowest frequency of APOE ε4+ subjects, the highest CSF level of amyloid-β, and the lowest CSF levels of t-tau and p-tau. Neuropsychological assessments were also suggestive of better cognitive performance in the reversion group. Patients with reversion to normal state had higher glucose metabolism in bilateral angular and left middle/inferior temporal gyri, when compared to those with stable MCI state. Meanwhile, lower amyloid-β deposition at baseline was observed in the fron- tal and parietal regions of the reverted subjects. On the other hand, the conversion group showed lower cerebral glucose metabolism in bilateral angular and bilateral middle/inferior temporal gyri compared to the stable MCI group, whereas the amyloid-β accumulation was similar between the groups. Conclusions: This longitudinal study provides novel insight regarding the application of PET imag- ing in predicting MCI transition over time.


Sign in / Sign up

Export Citation Format

Share Document