scholarly journals On the Control of Coefficient Function in a Hyperbolic Problem with Dirichlet Conditions

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Seda İğret Araz ◽  
Murat Subaşi

This paper presents theoretical results about control of the coefficient function in a hyperbolic problem with Dirichlet conditions. The existence and uniqueness of the optimal solution for optimal control problem are proved and adjoint problem is used to obtain gradient of the functional. However, a second adjoint problem is given to calculate the gradient on the space W210,l. After calculating gradient of the cost functional and proving the Lipschitz continuity of the gradient, necessary condition for optimal solution is constructed.

Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Yusuf Koçak ◽  
Ercan Çelik ◽  
Nigar Yıldırım Aksoy

AbstractIn this work, we present some results showing the controllability of the linear Schrödinger equation with complex potentials. Firstly we investigate the existence and uniqueness theorem for solution of the considered problem. Then we find the gradient of the cost functional with the help of Hamilton-Pontryagin functions. Finally we state a necessary condition in the form of variational inequality for the optimal solution using this gradient.


2019 ◽  
Vol 4 (2) ◽  
pp. 469-474
Author(s):  
Yesim Sarac ◽  
S. Sule Sener

AbstractThis study aims to investigate the problem of determining the unknown initial temperature in a variable coefficient heat equation. We obtain the existence and uniqueness of the solution of the optimal control problem considered under some conditions. Using the adjoint problem approach, we get the Frechet differential of the cost functional. We construct a minimizing sequence and give the convergence rate of this sequence. Also, we test the theoretical results in a numerical example by using the MAPLE® program.


Author(s):  
Fernando Miguelez ◽  
Josu Doncel ◽  
Balakrishna J. Prabhu

AbstractWe study the optimal Bernoulli routing in a multiclass queueing system with a dedicated server for each class as well as a common (or multi-skilled) server that can serve jobs of all classes. Jobs of each class arrive according to a Poisson process. Each server has a holding cost per customer and use the processor sharing discipline for service. The objective is to minimize the weighted mean holding cost. First, we provide conditions under which classes send their traffic only to their dedicated server, only to the common server, or to both. A fixed point algorithm is given for the computation of the optimal solution. We then specialize to two classes and give explicit expressions for the optimal loads. Finally, we compare the cost of multi-skilled server with that of only dedicated or all common servers. The theoretical results are complemented by numerical examples that illustrate the various structural results as well as the convergence of the fixed point algorithm.


2020 ◽  
Vol 5 (1) ◽  
pp. 456
Author(s):  
Tolulope Latunde ◽  
Joseph Oluwaseun Richard ◽  
Opeyemi Odunayo Esan ◽  
Damilola Deborah Dare

For twenty decades, there is a visible ever forward advancement in the technology of mobility, vehicles and transportation system in general. However, there is no "cure-all" remedy ideal enough to solve all life problems but mathematics has proven that if the problem can be determined, it is most likely solvable. New methods and applications will keep coming to making sure that life problems will be solved faster and easier. This study is to adopt a mathematical transportation problem in the Coca-Cola company aiming to help the logistics department manager of the Asejire and Ikeja plant to decide on how to distribute demand by the customers and at the same time, minimize the cost of transportation. Here, different algorithms are used and compared to generate an optimal solution, namely; North West Corner Method (NWC), Least Cost Method (LCM) and Vogel’s Approximation Method (VAM). The transportation model type in this work is the Linear Programming as the problems are represented in tables and results are compared with the result obtained on Maple 18 software. The study shows various ways in which the initial basic feasible solutions to the problem can be obtained where the best method that saves the highest percentage of transportation cost with for this problem is the NWC. The NWC produces the optimal transportation cost which is 517,040 units.


Author(s):  
Anastasiya V. Mironova ◽  
Igor’ V. Liskin ◽  
Irina I. Afonina

Neglect of soils leads to their degradation, worsens useful properties, and reduces fertility and productivity. (Research purpose) The research purpose is in conducting a comparative analysis of technologies for treating degraded soils, taking into account the economic feasibility of their restoration in non-black-soil regions of Russia. (Materials and methods) The article shows the main technological scheme of restoration of degraded soils. Authors have identified the main groups of land that are located in non-black-soil regions of Russia. (Results and discussion) The article presents the need for equipment, economic and labor costs for the restoration of each type of land in the non-black-soil regions of Russia. Authors took into account that the salary of machine operators depends on the time of direct execution of the task. It was found that the restoration of virgin and fallow lands was the most preferable from the economic, energy-saving and environmental points of view. The article shows that the restoration of pasture areas exceeds the cost of processing virgin lands, but the number of necessary machine and tractor units is comparable to work on virgin lands. Authors recommend to develop the soils with woody and shrubby vegetation in the first place, starting with land occupied by young plants. It is necessary to take into account the criteria for the fertility of the soil layer. It was found that soils with a small excess of moisture have small cost of its development, while on heavily swampy soils the cost of work on their development is many times higher than the cost of restoring other types of land. (Conclusion) The article shows that the restoration of neglected land is a necessary condition for improving the provision of human needs for food and a number of industrial goods. First of all, it is necessary to develop land that requires minimal investment of economic and labor costs.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 514
Author(s):  
Leonardo Bayas-Jiménez ◽  
F. Javier Martínez-Solano ◽  
Pedro L. Iglesias-Rey ◽  
Daniel Mora-Melia ◽  
Vicente S. Fuertes-Miquel

A problem for drainage systems managers is the increase in extreme rain events that are increasing in various parts of the world. Their occurrence produces hydraulic overload in the drainage system and consequently floods. Adapting the existing infrastructure to be able to receive extreme rains without generating consequences for cities’ inhabitants has become a necessity. This research shows a new way to improve drainage systems with minimal investment costs, using for this purpose a novel methodology that considers the inclusion of hydraulic control elements in the network, the installation of storm tanks and the replacement of pipes. The presented methodology uses the Storm Water Management Model for the hydraulic analysis of the network and a modified Genetic Algorithm to optimize the network. In this algorithm, called the Pseudo-Genetic Algorithm, the coding of the chromosomes is integral and has been used in previous studies of hydraulic optimization. This work evaluates the cost of the required infrastructure and the damage caused by floods to find the optimal solution. The main conclusion of this study is that the inclusion of hydraulic controls can reduce the cost of network rehabilitation and decrease flood levels.


2019 ◽  
Vol 11 (9) ◽  
pp. 2571
Author(s):  
Xujing Zhang ◽  
Lichuan Wang ◽  
Yan Chen

Low-carbon production has become one of the top management objectives for every industry. In garment manufacturing, the material distribution process always generates high carbon emissions. In order to reduce carbon emissions and the number of operators to meet enterprises’ requirements to control the cost of production and protect the environment, the paths of material distribution were analyzed to find the optimal solution. In this paper, the model of material distribution to obtain minimum carbon emissions and vehicles (operators) was established to optimize the multi-target management in three different production lines (multi-line, U-shape two-line, and U-shape three-line), while the workstations were organized in three ways: in the order of processes, in the type of machines, and in the components of garment. The NSGA-II algorithm (non-dominated sorting genetic algorithm-II) was applied to obtain the results of this model. The feasibility of the model and algorithm was verified by the practice of men’s shirts manufacture. It could be found that material distribution of multi-line layout produced the least carbon emissions when the machines were arranged in the group of type.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Fouzia Amir ◽  
Ali Farajzadeh ◽  
Jehad Alzabut

Abstract Multiobjective optimization is the optimization with several conflicting objective functions. However, it is generally tough to find an optimal solution that satisfies all objectives from a mathematical frame of reference. The main objective of this article is to present an improved proximal method involving quasi-distance for constrained multiobjective optimization problems under the locally Lipschitz condition of the cost function. An instigation to study the proximal method with quasi distances is due to its widespread applications of the quasi distances in computer theory. To study the convergence result, Fritz John’s necessary optimality condition for weak Pareto solution is used. The suitable conditions to guarantee that the cluster points of the generated sequences are Pareto–Clarke critical points are provided.


1998 ◽  
Vol 2 (1) ◽  
pp. 65-104 ◽  
Author(s):  
V. Adlakha ◽  
H. Arsham

In a fast changing global market, a manager is concerned with cost uncertainties of the cost matrix in transportation problems (TP) and assignment problems (AP).A time lag between the development and application of the model could cause cost parameters to assume different values when an optimal assignment is implemented. The manager might wish to determine the responsiveness of the current optimal solution to such uncertainties. A desirable tool is to construct a perturbation set (PS) of cost coeffcients which ensures the stability of an optimal solution under such uncertainties.The widely-used methods of solving the TP and AP are the stepping-stone (SS) method and the Hungarian method, respectively. Both methods fail to provide direct information to construct the needed PS. An added difficulty is that these problems might be highly pivotal degenerate. Therefore, the sensitivity results obtained via the available linear programming (LP) software might be misleading.We propose a unified pivotal solution algorithm for both TP and AP. The algorithm is free of pivotal degeneracy, which may cause cycling, and does not require any extra variables such as slack, surplus, or artificial variables used in dual and primal simplex. The algorithm permits higher-order assignment problems and side-constraints. Computational results comparing the proposed algorithm to the closely-related pivotal solution algorithm, the simplex, via the widely-used pack-age Lindo, are provided. The proposed algorithm has the advantage of being computationally practical, being easy to understand, and providing useful information for managers. The results empower the manager to assess and monitor various types of cost uncertainties encountered in real-life situations. Some illustrative numerical examples are also presented.


Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 78 ◽  
Author(s):  
M. B. Hastings

We give a quantum algorithm to exactly solve certain problems in combinatorial optimization, including weighted MAX-2-SAT as well as problems where the objective function is a weighted sum of products of Ising variables, all terms of the same degree D; this problem is called weighted MAX-ED-LIN2. We require that the optimal solution be unique for odd D and doubly degenerate for even D; however, we expect that the algorithm still works without this condition and we show how to reduce to the case without this assumption at the cost of an additional overhead. While the time required is still exponential, the algorithm provably outperforms Grover's algorithm assuming a mild condition on the number of low energy states of the target Hamiltonian. The detailed analysis of the runtime dependence on a tradeoff between the number of such states and algorithm speed: fewer such states allows a greater speedup. This leads to a natural hybrid algorithm that finds either an exact or approximate solution.


Sign in / Sign up

Export Citation Format

Share Document