scholarly journals Numerical Study on Seismic Behavior of Underwater Bridge Columns Strengthened with Prestressed Precast Concrete Panels and Fiber-Reinforced Polymer Reinforcements

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yu Tang ◽  
Gang Wu ◽  
Zeyang Sun

The seismic performance of the bridge column, such as pier or pile, is a time-dependent property which may decrease in resistance to the deterioration or natural hazards along the structure’s service life. The most effective strengthened method for degraded bridge columns is the jacketing method, which has been widely developed and investigated through numerous studies since the 1980s. This paper presented a modeling method, as well as a comprehensive parametric study, on seismic performance of bridge columns strengthened by a newly developed strengthening method with prestressed precast concrete panels and fiber-reinforced polymer reinforcements (PPCP-FRP). A modeling method of bridge columns strengthened with PPCP-FRP was first presented and validated with test results. The influence of design parameters, such as axial load ratio, equivalent FRP reinforcement ratio rate (EQFRR), expansion ratio, and shear span ratio of strengthened columns, were then further evaluated in terms of lateral load capacity, ductility, energy dissipation, lateral stiffness, and residual displacement of strengthened columns. The peak load of strengthened columns increases with the increasing of EQFRR due to the unique failure model of strengthened columns characterized by the fracture of FRP bars. The initial stiffness of strengthened columns increased by 300% with the increasing of expansion ratio by 45%, and a stable postyield stiffness stage was obtained by most strengthened columns in analysis. The residual displacement of strengthened columns decreases rapidly with the increasing of EQFRR, which indicated that a better repairability could be achieved by the strengthened column with a relatively high EQFRR.

2017 ◽  
Vol 8 (2) ◽  
pp. 304-320 ◽  
Author(s):  
Mohamed MA Abdel-Kader ◽  
Ahmed Fouda

In this article, the response of 12 plain concrete specimens to an impact of hard projectiles was examined in an experimental study. The tests were planned with an aim to observe the influence of using glass fiber reinforced polymer sheets to strengthen plain concrete panels on the performance of concrete under this type of loading. The main findings show that strengthening plain concrete panels with glass fiber reinforced polymer sheets showed satisfactory performance under the impact load; the glass fiber reinforced polymer sheets can be used for strengthening or upgrading concrete structures to improve their resistance against impact. Also, the location of the glass fiber reinforced polymer sheet affects the front and rear face craters.


2018 ◽  
Vol 37 (9) ◽  
pp. 592-608 ◽  
Author(s):  
CY Zhu ◽  
YH Zhao ◽  
L Sun

The objective of this study is to investigate the seismic performance of fiber-reinforced polymer-reinforced concrete-filled thin-walled steel tube (CFTST). Twelve specimens with different fiber-reinforced polymer types (glass fiber-reinforced polymer and carbon fiber-reinforced polymer) and reinforcing modes were tested under constant axially compressive load and cyclic lateral load. The failure mode and lateral load versus displacement relationship for each specimen were recorded during testing. The strength, ductility, and energy dissipation capacity were analyzed accordingly. Further, a stress–strain relationship and a restoring force model of the fiber-reinforced polymer confining steel tube with local buckling were proposed. A hysteretic model for the fiber-reinforced polymer-reinforced CFTST was developed subsequently. The results indicate that the seismic performance of fiber-reinforced polymer-reinforced CFTST can be effectively improved by optimizing the fiber-reinforced polymer type and corresponding reinforcing scheme. Carbon fiber-reinforced polymer and glass fiber-reinforced polymer are suitable materials for the confinement and bending reinforcement of the column, respectively. The modeling results show the energy imported into the column is mainly dissipated by the thin-walled steel tube. The energy dissipation proportion of the steel tube, concrete core, and longitudinal fiber-reinforced polymer are >80%, 10%–20%, and <8%, respectively. The energy dissipation value of the steel tube can be improved more than 40% after effectively restraining the local buckling.


2017 ◽  
Vol 21 (4) ◽  
pp. 613-623 ◽  
Author(s):  
Gamal Elnabelsy ◽  
Murat Saatcioglu

One of the applications of fiber-reinforced polymers in bridge construction is stay-in-place formwork. Fiber-reinforced polymer stay-in-place formwork, in the form of preformed tubes, provides easy form assembly, protection of steel reinforcement and concrete against corrosion and chemical attacks while also improving the strength and ductility of structural elements in earthquake resistant construction. Experimental research was conducted to investigate the seismic performance of fiber-reinforced polymer stay-in-place formwork for bridge columns. Tests of large-scale specimens were conducted under simulated seismic loading. The experimental program included circular and square columns confined with carbon fiber–reinforced polymer tubes. The results indicate that the use of carbon fiber–reinforced polymer tubes increases column inelastic deformability significantly. Bridge columns under low levels of axial compression exhibit inelastic drift capacities in excess of 4% before failing in flexural tension due to the rupturing of longitudinal reinforcement. These observations and experimental results were used to develop a displacement-based design procedure for concrete confinement for fiber-reinforced polymer–encased concrete columns. This article presents an overview of the experimental program and the design approach developed.


Sign in / Sign up

Export Citation Format

Share Document