scholarly journals Energy Transfer Using Gradient Index Metamaterial

2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Boopalan Ganapathy ◽  
Subramaniam Chittur Krishnaswamy

The gradient refractive index structure in this paper is used to increase the quantum of energy transfer. This is done by improving the directive gain of the pyramidal horn antenna at a frequency of 10 GHz. A three-dimensional array of closed square rings is placed in front of the horn antenna aperture to form a gradient refractive index structure. This structure increases the directive gain by 1.6 dB as compared to that of the conventional horn antenna. The structure nearly doubles the wireless power transfer quantum between the transmitter and the receiver when placed at both ends. The increase in the directivity is achieved by converting the spherical wave emanating from the horn to a plane wave once it passes through the structure. This transformation is realized by the gradient refractive index structure being placed perpendicular to the direction of propagation. The gradient refractive index is constructed by changing the dimensions of a closed square ring placed in the unit cell of the array. The change in the refractive index gives rise to an improvement of the half power beam width and side lobe level compared to that of the normal horn. The design and simulation were done using CST Studio software.

2017 ◽  
Vol 6 (4) ◽  
pp. 63-69 ◽  
Author(s):  
R. Singha ◽  
D. Vakula

A broadband gradient refractive index (GRIN) metamaterial is used to improve the gain of the tapered slot antenna. The proposed metamaterial is capable of reducing the side lobe level of the antenna. The gradient refractive index (GRIN) metamaterial is constructed by using non-resonant parallel-line unit cells with different refractive index. Due to the non-resonant structure, the proposed unit cell exhibits low loss and large frequency bandwidth. The metamaterial, whose effective refractive index is lower than that of the substrate on which the antenna is printed. Therefore, the proposed metamaterial is act as a regular lens in beam focusing. The GRIN metamaterial is integrated in front of the antenna which has the capability to manipulate electromagnetic wave accurately. The measurement results indicate that the reflection coefficient of the antenna is below -10 dB over the frequency band from 3 to 11 GHz. The radiation pattern of the antenna shows the beam width becomes narrow and directive with low side lobe level. The peak gain is increased by 2.1 dB at 9.5 GHz.


2018 ◽  
Vol 7 (4) ◽  
pp. 27-33 ◽  
Author(s):  
R. Manikandan ◽  
P. H. Rao ◽  
P. K. Jawahar

Three dimensional meta surface lens is proposed to improve the gain and beam shaping of horn antenna. Hence an array of SRR as a meta surface lens has been designed, fabricated and investigated. This meta surface lens can be used to convert the spherical wave to plane wave for a wide range of frequency. It is proved by permeability and permittivity of meta surface. In this work the operating bandwidth of the proposed antenna is in the range of 9GHz to 11GHz for satellite application. The radiation pattern of E and H plane is sharpened in this work. The antenna 3dB beam width, and front to back ratio were 9.2, 28dB at 10GHz. The radiation characteristics of horn antenna with meta surface have been studied numerically and confirmed experimentally, showing an average gain improvement of ~3dB with respect to horn antenna without meta surface lens.


2017 ◽  
Vol 56 (19) ◽  
pp. 5336 ◽  
Author(s):  
Yinghui Cao ◽  
Raj Mittra ◽  
Zhenyu Liu ◽  
Jie Zheng

Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 673 ◽  
Author(s):  
Qian Kong ◽  
Huimin Ying ◽  
Xi Chen

In recent years, the concept of “shortcuts to adiabaticity" has been originally proposed to speed up sufficiently slow adiabatic process in various quantum systems without final excitation. Based on the analogy between classical optics and quantum mechanics, we present a study on fast non-adiabatic compression of optical beam propagation in nonlinear gradient refractive-index media by using shortcuts to adiabaticity. We first apply the variational approximation method in nonlinear optics to derive the auxiliary equation for connecting the beam width with the refractive index of the medium. Then, the gradient refractive index is inversely designed through the perfect compression of beam width with the appropriate boundary conditions. Finally, the comparison with conventional adiabatic compression is made, showing the advantage of our shortcuts.


2019 ◽  
Vol 75 (1) ◽  
pp. 65-71
Author(s):  
Behrooz Rezaei ◽  
Ibrahim Halil Giden ◽  
Mohammad Sadegh Zakerhamidi ◽  
Amid Ranjkesh ◽  
Tae-Hoon Yoon

AbstractWe proposed a new method for designing graded index lens using liquid crystal infiltration into annular photonic crystals. Applying an external nonuniform voltage in the transverse direction perpendicular to the direction of light propagation yields different orientation of liquid crystal molecules inside the photonic crystal unit cells. As a result, a gradient refractive index was modulated. We numerically investigate focusing properties of the designed graded index structure using plane-wave expansion and finite-difference time-domain methods. The gradient refractive index profile was adjusted by varying the nonuniform voltage excitations, which consequently altered the focal distance of the graded index structure. A wide tuning range of 1856 nm was achieved for focal distance by the proposed graded index structure. This feature can be implemented for planning a flat lens with tunable focal distance based on electro-optic effect. These achievements may have future applications in some optical devices such as near-field imaging and scanning.


1997 ◽  
Vol 22 (10) ◽  
pp. 668 ◽  
Author(s):  
Jui-Hsiang Liu ◽  
Hung-Tsai Liu

Sign in / Sign up

Export Citation Format

Share Document