scholarly journals Gain Enhancement of Horn Antenna Using Meta Surface Lens

2018 ◽  
Vol 7 (4) ◽  
pp. 27-33 ◽  
Author(s):  
R. Manikandan ◽  
P. H. Rao ◽  
P. K. Jawahar

Three dimensional meta surface lens is proposed to improve the gain and beam shaping of horn antenna. Hence an array of SRR as a meta surface lens has been designed, fabricated and investigated. This meta surface lens can be used to convert the spherical wave to plane wave for a wide range of frequency. It is proved by permeability and permittivity of meta surface. In this work the operating bandwidth of the proposed antenna is in the range of 9GHz to 11GHz for satellite application. The radiation pattern of E and H plane is sharpened in this work. The antenna 3dB beam width, and front to back ratio were 9.2, 28dB at 10GHz. The radiation characteristics of horn antenna with meta surface have been studied numerically and confirmed experimentally, showing an average gain improvement of ~3dB with respect to horn antenna without meta surface lens.

2019 ◽  
Vol 30 (8) ◽  
pp. 1148-1162 ◽  
Author(s):  
Luca Luschi ◽  
Giuseppe Iannaccone ◽  
Francesco Pieri

Simplified one-dimensional models for composite beams with piezoelectric layers, which are intrinsically three-dimensional structures, are important for many applications, including piezoelectric energy harvesters. To reduce the dimensionality of the system, assumptions on the stress/strain state in the transverse direction are typically made. The most common are those of null transverse stress, used for narrow beams, null transverse deformation, used for wide beams, and continuous interface strain, suited for thin piezoelectric layers (we call this assumption thin film continuous). We show that the models based on these assumptions are often used uncritically for beam geometries for which large errors may result. In particular, null transverse stress fails even for narrow beams if the thickness is much smaller than the beam width. We give clear geometric criteria that, for any geometry, allow the selection of the most accurate model among the three. We also develop a single, unified beam equation encompassing the three models and compare the analytical results from this equation with finite element simulations over a wide range of beam lengths, widths, and layer thicknesses. The selection criteria and the unified beam equation form a valuable tool for fast and accurate design of composite piezoelectric beams.


2021 ◽  
Vol 263 (5) ◽  
pp. 1744-1755
Author(s):  
Pranav Sriganesh ◽  
Rick Dehner ◽  
Ahmet Selamet

Decades of successful research and development on automotive silencers for engine breathing systems have brought about significant reductions in emitted engine noise. A majority of this research has pursued airborne noise at relatively low frequencies, which typically involve plane wave propagation. However, with the increasing demand for downsized turbocharged engines in passenger cars, high-frequency compressor noise has become a challenge in engine induction systems. Elevated frequencies promote multi-dimensional wave propagation rendering at times conventional silencer treatments ineffective due to the underlying assumption of one-dimensional wave propagation in their design. The present work focuses on developing a high-frequency silencer that targets tonal noise at the blade-pass frequency within the compressor inlet duct for a wide range of rotational speeds. The approach features a novel "acoustic straightener" that creates exclusive plane wave propagation near the silencing elements. An analytical treatment is combined with a three-dimensional acoustic finite element method to guide the early design process. The effects of mean flow and nonlinearities on acoustics are then captured by three-dimensional computational fluid dynamics simulations. The configuration developed by the current computational effort will set the stage for further refinement through future experiments.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Boopalan Ganapathy ◽  
Subramaniam Chittur Krishnaswamy

The gradient refractive index structure in this paper is used to increase the quantum of energy transfer. This is done by improving the directive gain of the pyramidal horn antenna at a frequency of 10 GHz. A three-dimensional array of closed square rings is placed in front of the horn antenna aperture to form a gradient refractive index structure. This structure increases the directive gain by 1.6 dB as compared to that of the conventional horn antenna. The structure nearly doubles the wireless power transfer quantum between the transmitter and the receiver when placed at both ends. The increase in the directivity is achieved by converting the spherical wave emanating from the horn to a plane wave once it passes through the structure. This transformation is realized by the gradient refractive index structure being placed perpendicular to the direction of propagation. The gradient refractive index is constructed by changing the dimensions of a closed square ring placed in the unit cell of the array. The change in the refractive index gives rise to an improvement of the half power beam width and side lobe level compared to that of the normal horn. The design and simulation were done using CST Studio software.


2011 ◽  
Vol 383-390 ◽  
pp. 2935-2940
Author(s):  
Rong Kong ◽  
Dong Lin Su ◽  
Qiu Yuan Lv

The idea of this paper roots in the electromagnetic compatibility design of the whole aircraft system, in which out of band characteristics of airborne antennas are of equal importance as their characteristics in band. The definition of antenna characteristics for out of band is interpreted. Horn antennas are the main research objects in this paper. In order to make characteristic of this type antenna for out of band have a general, this paper is special to select pyramidal horn antenna and conical horn antenna. The characterization framework of horn antennas radiation characteristics for out of band is established, and the theoretical expressions of their radiation characteristics for out of band are given. In ensuring better antenna characteristics in band, four horn antennas that are different types of sizes, different frequency band width are simulated and analyzed by using electromagnetic simulation software HFSS. It is meaningful to analyze radiation characteristics and summarize different features for various performance parameters of these horn antennas for in band and out of band. Focus on characteristics of the changes for the maximum gain, 3dB beam width parameters of horn antennas within the working frequency band and out of working band. The results show that: radiation characteristics of horn antenna are the law within the working frequency band and out of working band.


Author(s):  
Е.А. Ищенко ◽  
Ю.Г. Пастернак ◽  
М.А. Сиваш ◽  
С.М. Фёдоров

Рассматривается метаматериал, который интегрирован в конструкцию пирамидальной рупорной антенны. Коммутация узлов метаматериала позволяет осуществлять управление диаграммой направленности рассматриваемой антенны. Для замыкания узлов в решетке метаматериала применяются pin-диоды, которые имеют в открытом состоянии эквивалентную схему, представляющую собой последовательное соединение сопротивления 2,1 Ом и индуктивности 0,6 нГн. Предложенная конструкция позволяет добиться управления характеристиками диаграммы направленности рассматриваемой антенны в широких пределах. Управление характеристиками антенн путем применения метаматериалов различных конструкций является передовым методом управления характеристиками излучателя. Для получения результатов применялось электродинамическое моделирование в специализированном программном обеспечении, на основе полученных результатов были построены диаграммы направленности в диапазоне работы рупорной антенны. Приведены результаты моделирования в виде трехмерных моделей исследуемых конструкций метаматериала, коммутируемых узлов; диаграммы направленности полученных антенн, на которых были определены изменения, вносимые коммутируемыми линиями метаматериала. Наибольшее изменение картин диаграмм направленности наблюдалось на частотах 13 и 14 ГГц, входящих в целевой диапазон работ рупорной антенны, основные исследования производились в H-плоскости рупора, так как коммутации подвергались вертикальные линии метаматериала The article discusses a metamaterial that is integrated into the structure of a pyramidal horn. Switching the nodes of the metamaterial allows you to control the radiation pattern of the antenna in question. To close the nodes in the lattice of the metamaterial, pin diodes are used, which in the open state have an equivalent circuit, which is a series connection of a resistance of 2.1 Ohm and an inductance of 0.6 nH. The proposed design makes it possible to achieve control over the characteristics of the radiation pattern of the antenna in question over a wide range. Antenna control by the use of metamaterials of various designs is an advanced method of a beam control. To obtain the results, electrodynamic modeling was used in specialized software, on the basis of the results obtained, directional patterns were constructed in the operating range of the horn antenna. The article presents the results of modeling in the form of three-dimensional models of the investigated metamaterial structures, switched nodes; directional diagrams of the received antennas, on which the changes introduced by the switched lines of the metamaterial were determined. The greatest change in the patterns of radiation patterns was observed at frequencies of 13 and 14 GHz, included in the target range of the horn antenna, the main studies were carried out in the H-plane of the horn, since the vertical lines of the metamaterial were subjected to commutation


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 343
Author(s):  
Veronica Folliero ◽  
Carla Zannella ◽  
Annalisa Chianese ◽  
Debora Stelitano ◽  
Annalisa Ambrosino ◽  
...  

Despite advances in medical knowledge, parasitic diseases remain a significant global health burden and their pharmacological treatment is often hampered by drug toxicity. Therefore, drug delivery systems may provide useful advantages when used in combination with conventional therapeutic compounds. Dendrimers are three-dimensional polymeric structures, characterized by a central core, branches and terminal functional groups. These nanostructures are known for their defined structure, great water solubility, biocompatibility and high encapsulation ability against a wide range of molecules. Furthermore, the high ratio between terminal groups and molecular volume render them a hopeful vector for drug delivery. These nanostructures offer several advantages compared to conventional drugs for the treatment of parasitic infection. Dendrimers deliver drugs to target sites with reduced dosage, solving side effects that occur with accepted marketed drugs. In recent years, extensive progress has been made towards the use of dendrimers for therapeutic, prophylactic and diagnostic purposes for the management of parasitic infections. The present review highlights the potential of several dendrimers in the management of parasitic diseases.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2950
Author(s):  
Hongwei Song ◽  
Xinle Li

The most active research area is nanotechnology in cementitious composites, which has a wide range of applications and has achieved popularity over the last three decades. Nanoparticles (NPs) have emerged as possible materials to be used in the field of civil engineering. Previous research has concentrated on evaluating the effect of different NPs in cementitious materials to alter material characteristics. In order to provide a broad understanding of how nanomaterials (NMs) can be used, this paper critically evaluates previous research on the influence of rheology, mechanical properties, durability, 3D printing, and microstructural performance on cementitious materials. The flow properties of fresh cementitious composites can be measured using rheology and slump. Mechanical properties such as compressive, flexural, and split tensile strength reveal hardened properties. The necessary tests for determining a NM’s durability in concrete are shrinkage, pore structure and porosity, and permeability. The advent of modern 3D printing technologies is suitable for structural printing, such as contour crafting and binder jetting. Three-dimensional (3D) printing has opened up new avenues for the building and construction industry to become more digital. Regardless of the material science, a range of problems must be tackled, including developing smart cementitious composites suitable for 3D structural printing. According to the scanning electron microscopy results, the addition of NMs to cementitious materials results in a denser and improved microstructure with more hydration products. This paper provides valuable information and details about the rheology, mechanical properties, durability, 3D printing, and microstructural performance of cementitious materials with NMs and encourages further research.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chaojian Chen ◽  
Manjesh Kumar Singh ◽  
Katrin Wunderlich ◽  
Sean Harvey ◽  
Colette J. Whitfield ◽  
...  

AbstractThe creation of synthetic polymer nanoobjects with well-defined hierarchical structures is important for a wide range of applications such as nanomaterial synthesis, catalysis, and therapeutics. Inspired by the programmability and precise three-dimensional architectures of biomolecules, here we demonstrate the strategy of fabricating controlled hierarchical structures through self-assembly of folded synthetic polymers. Linear poly(2-hydroxyethyl methacrylate) of different lengths are folded into cyclic polymers and their self-assembly into hierarchical structures is elucidated by various experimental techniques and molecular dynamics simulations. Based on their structural similarity, macrocyclic brush polymers with amphiphilic block side chains are synthesized, which can self-assemble into wormlike and higher-ordered structures. Our work points out the vital role of polymer folding in macromolecular self-assembly and establishes a versatile approach for constructing biomimetic hierarchical assemblies.


Sign in / Sign up

Export Citation Format

Share Document