scholarly journals Chinese National Condition Based Power Dispatching Optimization in Microgrids

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Gang Chen ◽  
Jian-Ming Wang ◽  
Xiao-Dong Yuan ◽  
Liang Chen ◽  
Lu-Jia Zhao ◽  
...  

This paper proposed a study on the power dispatching optimization in the microgrid aiming at Chinese national condition based on PSO algorithm. The whole work is on the basis of the weighted factor variation of the objective function due to different weather conditions. Three cases including the good contamination-diffusing weather condition, the smog weather condition, and the normal condition are considered, respectively. In the case of smog weather, the new energy generation and the battery system will be all out to use as less power as possible from the primary grid so that the pollution produced by coal consumption in the thermal power plants can be upmost reduced. However, in the case of perfect contamination-diffusing weather, the battery is not used to reserve its lifetime, while a large amount of exchanged power from the primary grid is used to obtain a most economic-efficient effect. In normal condition, the power dispatching is performed in a most balanced way considering not only the cost but also the environmental management. The case study in Suzhou Industrial Part confirms the effectiveness of the proposed method in this paper.

Author(s):  
Linda Ponta ◽  
Luca Oneto ◽  
Davide Anguita ◽  
Silvano Cincotti

The paper deals with the problem of choosing the best O&M strategy for wind power plants. Current maintenance theory considers just production opportunities and minimizes the maintenance costs, but with the liberalization of the electricity market also the electricity price has become an important variable to take into account in the O&M scheduling. Another important variables that is often neglected by the existing maintenance theory is the weather condition. This paper proposes a new strategy that takes into account the electricity price and weather conditions, improves the expected profit of the systems, and reduce the overall maintenance and logistic costs. The maintenance schedule is formalized as an optimization problem where the discounted cumulative profit of a wind generation portfolio in a fixed-time horizon (e.g. two years ahead), subject to the technologically-derived maintenance time constraints is optimized. Both the theoretical and computational aspects of the proposed O&M strategy are discussed. Results show that taking into account market and weather opportunities in the design of the maintenance strategy, it is possible to achieve a more complete scheduling for a given set of wind power plants.


2010 ◽  
Vol 10 (9) ◽  
pp. 20729-20768 ◽  
Author(s):  
H. Z. Tian ◽  
Y. Wang ◽  
Z. G. Xue ◽  
K. Cheng ◽  
Y. P. Qu ◽  
...  

Abstract. Emissions of hazardous trace elements in China are of great concern because of their negative impacts on local air quality as well as on regional environmental health and ecosystem risks. In this paper, the atmospheric emissions of mercury (Hg), arsenic (As), and selenium (Se) from coal combustion in China for the period 1980–2007 are estimated on the basis of coal consumption data and emission factors, which are specified by different categories of combustion facilities, coal types, and the equipped air pollution control devices configuration (Dust collectors, FGD, etc.). Specifically, multi-year emission inventories of Hg, As, and Se from 30 provinces and 4 economic sectors (thermal power, industry, residential use, and others) are evaluated and analyzed in detail. Furthermore, the gridded distribution of provincial-based Hg, As, and Se emissions in 2005 at a resolution of 1°×1° is also plotted. It shows that the calculated national total atmospheric emissions of Hg, As, and Se from coal combustion have rapidly increased from 73.59 t, 635.57 t, and 639.69 t in 1980 to 305.95 t, 2205.50 t, and 2352.97 t in 2007, at an annually averaged growth rate of 5.4%, 4.7%, and 4.9%, respectively. The industrial sector is the largest source for Hg, As, and Se, accounting for about 50.8%, 61.2%, and 56.2% of the national totals, respectively. The share of power plants is 43.3% for mercury, 24.9% for arsenic, and 33.4% for selenium, respectively. Also, it shows remarkably different regional contribution characteristics of these 3 types of trace elements, the top 5 provinces with the heaviest mercury emissions in 2007 are Shandong (34.40 t), Henan (33.63 t), Shanxi (21.14 t), Guizhou (19.48 t), and Hebei (19.35 t); the top 5 provinces with the heaviest arsenic emissions in 2007 are Shandong (219.24 t), Hunan (213.20 t), Jilin (141.21 t), Hebei (138.54 t), and Inner Mongolia (127.49 t); while the top 5 provinces with the heaviest selenium emissions in 2007 are Shandong (289.11 t), Henan (241.45 t), Jiangsu (175.44 t), Anhui (168.89 t), and Hubei (163.96 t). Between 2000 and 2007, provinces always rank at the top five largest Hg, As, and Se emission sources are: Shandong, Hebei, Shanxi, Henan, and Jiangsu, most of which are located in the east and are traditional industry-based or economically energy intensive areas in China. Notably, Hg, As, and Se emissions from coal combustion in China begin to grow at a more moderate pace since 2005. Emissions from coal-fired power plants sector began to decrease though the coal use had been increasing steadily, which can be mainly attributed to the more and more installation of WFGD in power plants, thus the further research and control orientations of importance for these hazardous trace elements should be the industrial sector.


2018 ◽  
Vol 8 (11) ◽  
pp. 2293 ◽  
Author(s):  
Liwei Ju ◽  
Peng Li ◽  
Qinliang Tan ◽  
Lili Wang ◽  
Zhongfu Tan ◽  
...  

In order to reduce the amount of abandoned clean energy, the complementary characterization of wind power plants (WPPs), photovoltaic power plants (PVs), hydropower stations (HSs), and thermal power plants (TPPs) combined with energy storage devices (ESDs) is considered, and they are integrated into a multi-energy complementary system (MECS). Firstly, a scenario-generating technique is proposed for uncertainty factors using the Wasserstein method and the improved K-medoids theory. Then, a multi-objective model and solution algorithm are constructed under the objectives of attaining the maximum operation revenue, the minimum abandoned energy cost, and the minimum output fluctuations. Meanwhile, the influence of different ESD operation modes on MECS operation is discussed, specifically, the longest life cycle (LLC) and the optimum economic efficiency (OEE). Thirdly, in order to solve the multi-objective model, a solution algorithm is proposed by using the rough set method to convert the multi-objective model into a single objective model based on the payoff table. Moreover, the complementary features of the MECS are evaluated in terms of the load tracking degree, HS secondary peaking capacity, and units of coal consumption. Finally, the improved IEEE 14-bus system is chosen for the simulation analysis. The results show that (1) the proposed uncertainty simulation method can efficiently generate the most representative scenarios; (2) MECSs can utilize complementary power sources, the OEE mode can better optimize MECS scheduling, and the LLC mode can ensure the ESDs’ life cycles; (3) the scheduling scheme of MECS operation reach the optimal level when the capacity ratio of ESD:WPP–PV iso [0.62, 0.77] in the OEE mode and [1, 1.08] in the LLC mode on a typical summer day, and the ratio is [0.92, 1] in the OEE mode and [1.23, 1.31] in the LLC mode on a typical winter day. Therefore, the proposed model provides effective decision-making support for designing the optimal plan for MECS operation.


2010 ◽  
Vol 10 (23) ◽  
pp. 11905-11919 ◽  
Author(s):  
H. Z. Tian ◽  
Y. Wang ◽  
Z. G. Xue ◽  
K. Cheng ◽  
Y. P. Qu ◽  
...  

Abstract. Emissions of hazardous trace elements in China are of great concern because of their negative impacts on local air quality as well as on regional environmental health and ecosystem risks. In this paper, the atmospheric emissions of mercury (Hg), arsenic (As), and selenium (Se) from coal combustion in China for the period 1980–2007 are estimated on the basis of coal consumption data and emission factors, which are specified by different categories of combustion facilities, coal types, and the equipped air pollution control devices configuration (Dust collectors, FGD, etc.). Specifically, multi-year emission inventories of Hg, As, and Se from 30 provinces and 4 economic sectors (thermal power, industry, residential use, and others) are evaluated and analyzed in detail. Furthermore, the gridded distribution of provincial-based Hg, As, and Se emissions in 2005 at a resolution of 1° × 1° is also plotted. It shows that the calculated national total atmospheric emissions of Hg, As, and Se from coal combustion have rapidly increased from 73.59 t, 635.57 t, and 639.69 t in 1980 to 305.95 t, 2205.50 t, and 2352.97 t in 2007, at an annually averaged growth rate of 5.4%, 4.7%, and 4.9%, respectively. The industrial sector is the largest source for Hg, As, and Se, accounting for about 50.8%, 61.2%, and 56.2% of the national totals, respectively. The share of power plants is 43.3% for mercury, 24.9% for arsenic, and 33.4% for selenium, respectively. Also, it shows remarkably different regional contribution characteristics of these 3 types of trace elements, the top 5 provinces with the heaviest mercury emissions in 2007 are Shandong (34.40 t), Henan (33.63 t), Shanxi (21.14 t), Guizhou (19.48 t), and Hebei (19.35 t); the top 5 provinces with the heaviest arsenic emissions in 2007 are Shandong (219.24 t), Hunan (213.20 t), Jilin (141.21 t), Hebei (138.54 t), and Inner Mongolia (127.49 t); while the top 5 provinces with the heaviest selenium emissions in 2007 are Shandong (289.11 t), Henan (241.45 t), Jiangsu (175.44 t), Anhui (168.89 t), and Hubei (163.96 t). Between 2000 and 2007, provinces always rank at the top five largest Hg, As, and Se emission sources are: Shandong, Hebei, Shanxi, Henan, and Jiangsu, most of which are located in the east and are traditional industry-based or economically energy intensive areas in China. Notably, Hg, As, and Se emissions from coal combustion in China begin to grow at a more moderate pace since 2005. Emissions from coal-fired power plants sector began to decrease though the coal use had been increasing steadily, which can be mainly attributed to the increasing use of wet flue gas desulfurization (WFGD) in power plants, thus the further research and control orientations of importance for these hazardous trace elements should be the industrial sector.


2021 ◽  
Vol 24 (6) ◽  
pp. 1271-1284
Author(s):  
L. N. Takaishvili ◽  
G. V. Agafonov

The purpose of the paper is to assess application directions and prospects of Irkutsk region power generating coals for the needs of electric and heat power engineering with regard to the possible export of elect rical energy to the countries of South-East Asia, and use as raw materials for coal chemistry needs. The research is carried out using the methods of system analysis involving analysis and synthesis, formalization and concretization, structuring and restructuring, classification. It is the first time when the category of local power generating coals is distinguished under the analysis of the balance reserves of thermal coals. Their feature is low-quality and remoteness from settlements and transportation lanes. Their resource estimate is also given – 0.54 billion tons. An estimate of the recoverable reserves of local coals is obtained: it is 260 million tons. The potential level of local coal production is calculated. A retrospect of consumption trends of regional thermal coals is given and possible application directions are considered in the long run. It is shown that the most demanded direction is the use of coals for energy needs, mainly at thermal power plants. The calculated volumes of coal consumption of two export TPPs, Mugunskaya and Ishideiskaya, are respectively 11 and 6 million tons. According to the authors' calculations, the percentage of electrical energy generation at coal -fired TPPs depending on its export variant implementation can increase by 1.5 – 2.1 times as compared with the level of 2019. Availability of significant reserves of power generating coals in the region makes them a reliable source of energy resources for the electric and thermal power industry, including the export of electrical energy and a promising raw material for the needs of coal chemistry. Potential capacity of coal mining is estimated at 50-60 million tons per year, including 6.5 million tons of local coals. Production potential of coal significantly exceeds its demand both at present and in the future.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3079 ◽  
Author(s):  
Albarbar ◽  
Arar

In this work, the energy status and supply plans of Saudi Arabia are discussed with a focus on concentrated solar power (CSP) technologies. Subsequently, optimal designs for a 20 MWe solar power plant external receiver, combined with a 15 h thermal energy storage unit, operating under the weather conditions of Neom City, located in northeast Saudi Arabia, is proposed. The effects of receiver tube diameters, tube thicknesses, tube thermal conductivity and receiver’s performance are studied in detail and compared to those used in a well know operational CSP plant. Results show that a smaller tube diameter and thickness give higher receiver thermal efficiency but increase the annual cost of pumping energy. However, that increment in cost is negligible compared to the total energy gained. Furthermore, the aspect ratio is investigated and it was found that a higher aspect ratio gives a higher thermal efficiency. The thermal efficiency of the optimised receiver was increased by about 1% more than the reference plant. In addition, the new design decreases the total estimated cost of tube material by approximately 43%. It is anticipated that the reported results could pave the path for more efficient solar thermal power plants.


2021 ◽  
Vol 237 ◽  
pp. 02007
Author(s):  
Dunnan Liu ◽  
Mengjiao Zou ◽  
Yue Zhang ◽  
Lingxiang Wang ◽  
Tingting Zhang ◽  
...  

The use of new energy to generate electricity in the power system and the large-scale increase of new energy grid connection has led to increasingly insufficient power system regulation, in order to solve this problem, the peak shaving auxiliary service market came into being.This article comprehensively analyzes the factors those affect the market clearing price of power peak shaving auxiliary services: The macro factors include energy economic policies (renewable energy and electric energy substitution), technological innovation, market operation rules, etc., and the micro factors include the quotation and demand of thermal power plants and wind power generation.The power peak shaving auxiliary service market is an important part of the power market. Its appearance makes the grid operation safer and more reliable, and the reasonable fluctuation of clearing prices and total market costs reflects the market’s sensitivity to peak shaving resource demand.This paper uses the BP neural network model to select 31 consecutive days of peak shaving auxiliary service clearing price data in North China for prediction.


Author(s):  
A. Mohamed Nazeer ◽  
S. Sasikala ◽  
M. Sathish Kumar ◽  
M. Yogeshwaran ◽  
K. Veeramani ◽  
...  

This paper presents the design and fabrication of a smart footwear using peltier module. It is developed such a way that it works in various difficult weather conditions. This system works on the principle of peltier effect, which is a reciprocal of seebeck effect. This system is designed to maintain a comfortable temperature inside the footwear. This footwear may help the workers in thermal power plants, cement industries, people working in the hot weather conditions. The peltier cell consists of two surfaces of cold and hot which moves electrons between the surfaces by reversing the direction of the current. Inside the peltier’s module, a P-N junction diode like structure, made of two different metals having a high difference of electron density. The higher density diffused component in cold and hot junctions improves the performance of peltier cell.


2012 ◽  
Vol 608-609 ◽  
pp. 644-648
Author(s):  
Nan He ◽  
Zhong Fu Tan ◽  
Chen Zhang ◽  
Jian Qiang An

Cost-effectiveness analysis model is established in this paper to examine the influence of the incorporation of wind power to the whole power supply system. Thermal power plants are used as the backup for wind power due to its intermittence, which will increase the coal consumption so that lower the profit of the thermal power plants. A further optimization model is also established to work out the profit of both the power plants and the grid after the incorporation of wind power, and the influence on the CO2 emission as well. It came to the conclusion that although the cost of coal-fired power plants increases because of offering back up to the wind power, CO2 emission from the generation side will decline which has the environmental benefit.


2019 ◽  
Vol 140 ◽  
pp. 03002
Author(s):  
Evgenii Zhukov ◽  
Konstantin Menyaev ◽  
Dmitry Taymasov

The paper presents use of wood waste as fuel in industrial thermal power plants. The paper proposes methods of disposal of low calorific fuels produced from waste. The results of physical experiments and numerical simulations showed possible effective application of wood waste as fuel in industrial thermal power plants. The presented boilers are of superior environmental performance as they are equipped with fuel circulation system. The boilers make rational use of wood waste and lower coal consumption in small and medium-sized thermal power plants. New technology is tested in an operating facility.


Sign in / Sign up

Export Citation Format

Share Document