scholarly journals Determination of Stability Correction Parameters for Dynamic Equations of Constrained Multibody Systems

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Lyu Guizhi ◽  
Liu Rong

When analyzing mechanical systems with numerical simulation by the Udwadia and Kalaba method, numerical integral results of dynamic equations will gradually deviate from requirements of constraint equations and eventually lead to constraint violation. It is a common method to solve the constraint violation by using constraint stability to modify the constraint equation. Selection of stability parameters is critical in the particular form of the corrected equation. In this paper, the method of selecting and determining of stability parameters is given, and these parameters will be used to correct the Udwadia-Kalaba basic equation by the Baumgarte constraint stability method. The selection domain of stability parameters is further reduced in view of the singularity of the constraint matrix during the integration procedure based on the selection domain which is obtained by the system stability analysis method. Errors of velocity violation and position violation are defined in the workspace, so as to determine the parameter values. Finally, the 3-link spatial manipulator is used to verify stability parameters of the proposed method. Numerical simulation results verify the effectiveness of the proposed method.

2020 ◽  
Vol 310 ◽  
pp. 00019
Author(s):  
Daniel Papán ◽  
Zuzana Papánová

By construction or by reconstruction of civil structures can be paraseismic load generated. This effect may causes cracks in buildings standing near the source of the vibrations. Numerical simulation is one of the possibilities how can be this problem analyzed. The vibrations velocities of source transmitted to the surrounding buildings can be used as excitation to the numerical simulations. In the paper is presented the case study of the assessment of the tension forces in load bearing cables in real civil structure. This estimation is based on theoretical and experimental dynamic equations comparison.


2021 ◽  
Vol 1096 (1) ◽  
pp. 012133
Author(s):  
A E Apriyanto ◽  
A R Virgiawan ◽  
H Pariaman ◽  
M Hisjam ◽  
N Hariyanto
Keyword(s):  

2020 ◽  
Vol 15 (4) ◽  
pp. 613-619
Author(s):  
Li Kong ◽  
Yunpeng Zhang ◽  
Zhijian Lin ◽  
Zhongzhu Qiu ◽  
Chunying Li ◽  
...  

Abstract The present work aimed to select the optimum solar tracking mode for parabolic trough concentrating collectors using numerical simulation. The current work involved: (1) the calculation of daily solar radiation on the Earth’s surface, (2) the comparison of annual direct solar radiation received under different tracking modes and (3) the determination of optimum tilt angle for the north-south tilt tracking mode. It was found that the order of solar radiation received in Shanghai under the available tracking modes was: dual-axis tracking > north-south Earth’s axis tracking > north-south tilt tracking (β = 15°) > north-south tilt tracking (β = 45) > north-south horizontal tracking > east-west horizontal tracking. Single-axis solar tracking modes feature simple structures and low cost. This study also found that the solar radiation received under the north-south tilt tracking mode was higher than that of the north-south Earth’s axis tracking mode in 7 out of 12 months. Therefore, the north-south tilt tracking mode was studied separately to determine the corresponding optimum tilt angles in Haikou, Lhasa, Shanghai, Beijing and Hohhot, respectively, which were shown as follows: 18.81°, 27.29°, 28.67°, 36.21° and 37.97°.


2006 ◽  
Vol 4 (13) ◽  
pp. 235-241 ◽  
Author(s):  
Nicholas J Savill ◽  
Darren J Shaw ◽  
Rob Deardon ◽  
Michael J Tildesley ◽  
Matthew J Keeling ◽  
...  

Most of the mathematical models that were developed to study the UK 2001 foot-and-mouth disease epidemic assumed that the infectiousness of infected premises was constant over their infectious periods. However, there is some controversy over whether this assumption is appropriate. Uncertainty about which farm infected which in 2001 means that the only method to determine if there were trends in farm infectiousness is the fitting of mechanistic mathematical models to the epidemic data. The parameter values that are estimated using this technique, however, may be influenced by missing and inaccurate data. In particular to the UK 2001 epidemic, this includes unreported infectives, inaccurate farm infection dates and unknown farm latent periods. Here, we show that such data degradation prevents successful determination of trends in farm infectiousness.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2647
Author(s):  
Gang Wang ◽  
Cheng Fan ◽  
Hao Xu ◽  
Xuelin Liu ◽  
Rui Wang

Accurately determining the height of the gas-guiding fracture zone in the overlying strata of the goaf is the key to find the height of the long horizontal borehole in the roof. In order to determine the height, in this study we chose the 6306 working face of Tangkou Coal Mine in China as a research example and used both the theoretical model and discrete element method (DEM) numerical simulation to find the height of the gas-guiding fracture zone and applied the height to drill a long horizontal borehole in the roof of the 6303 working face. Furthermore, the borehole was utilized to deep into the roof for coalbed methane drainage and the results were compared with conventional gas drainage measures from other aspects. The height of the gas-guiding fracture zone was found to be 48.57 m in theoretical model based on the bulk coefficient and the void ratio and to be 51.19 m in the DEM numerical simulation according to the temporal and spatial variation characteristics of porosity. Taking both the results of theoretical analysis and numerical simulation into consideration, we determined that gas-guiding fracture zone is 49.88 m high and applied it to drill a long horizontal borehole deep into the roof in the 6303 working face field. Compared with conventional gas drainage measures, we found that the long horizontal borehole has the high stability, high efficiency and strong adaptability for methane drainage.


Sign in / Sign up

Export Citation Format

Share Document