scholarly journals Dynamics Behavior Analysis of Parallel Mechanism with Joint Clearance and Flexible Links

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Chen Xiulong ◽  
Jia Yonghao ◽  
Deng Yu ◽  
Wang Qing

In this study, the dynamics behaviors analysis of parallel mechanism considering joint clearance and flexible links are investigated using a computational methodology. The nonlinear dynamic model of 4-UPS-RPS spatial parallel mechanism with clearance in spherical joint and flexible links is established by combining KED method and Lagrange method. The dynamic responses including collision force and motion characteristics of the moving platform are obtained. Chaos and bifurcation are analyzed. The effects of different clearances on the dynamics behaviors of the parallel mechanism are studied. The results show that 4-UPS-RPS spatial parallel mechanism is very sensitive to joint clearance and flexible links, and small variations in the clearance value can cause the mechanism change from periodic motion to chaotic motion. This research provides a methodology for forecasting the dynamics behavior of parallel mechanisms with clearance and flexible links.

Robotica ◽  
2020 ◽  
pp. 1-17
Author(s):  
Xiulong Chen ◽  
Jingyao Guo

SUMMARY This paper proposes a dynamic modeling method of redundant drive spatial parallel mechanism, dynamics of 4-UPS-RPU redundant driving spatial parallel mechanism considering spherical joint clearance are analyzed. The dynamic equation of spherical joint clearance with Lagrange multiplier is built. The influences of single clearance and multiple clearances on dynamic responses of redundant drive spatial parallel mechanisms are analyzed under different clearance values. The results show that the dynamic characteristics of the mechanism with single clearance are basically consistent with the ideal situation, and the dynamic characteristics of the mechanism with multi-clearance are significantly different from the ideal situation.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110177
Author(s):  
Jia Yonghao ◽  
Chen Xiulong

For spatial multibody systems, the dynamic equations of multibody systems with compound clearance joints have a high level of nonlinearity. The coupling between different types of clearance joints may lead to abundant dynamic behavior. At present, the dynamic response analysis of the spatial parallel mechanism considering the three-dimensional (3D) compound clearance joint has not been reported. This work proposes a modeling method to investigate the influence of the 3D compound clearance joint on the dynamics characteristics of the spatial parallel mechanism. For this purpose, 3D kinematic models of spherical clearance joint and revolute joint with radial and axial clearances are derived. Contact force is described as normal contact and tangential friction and later introduced into the nonlinear dynamics model, which is established by the Lagrange multiplier technique and Jacobian of constraint matrix. The influences of compound clearance joint and initial misalignment of bearing axes on the system are analyzed. Furthermore, validation of dynamics model is evaluated by ADAMS and Newton–Euler method. This work provides an essential theoretical basis for studying the influences of 3D clearance joints on dynamic responses and nonlinear behavior of parallel mechanisms.


Author(s):  
Chen Xiulong ◽  
Li Yuewen ◽  
Jia Yonghao

Spherical joint is a type of common kinematic pair in spatial parallel mechanism. The existence of spherical joint clearance has many adverse effects on the mechanism. A method of forecasting the dynamic behaviors of spatial parallel mechanism with spherical clearance joint is proposed. The 4-UPS-UPU spatial parallel mechanism with spherical clearance is taken as the research object, the dynamic response, and nonlinear characteristics of the mechanism are studied. The kinematic model and the contact force model of the spherical clearance are established. The dynamic equation of the spatial parallel mechanism with spherical joint clearance is derived by Newton–Euler method. The above-mentioned dynamic equation is solved by using the ODE113 function that is based on a variable order numerical differential algorithm in matlab. The dynamic responses of moving platform with different clearance values are analyzed. The contact force and the center trajectory of the sphere at the spherical joint are obtained. In addition, the phase trajectory, Poincare map, and bifurcation diagram are analyzed, and the nonlinear characteristics of the spherical clearance joint and the moving platform are obtained. By comparing the results, such as the acceleration of moving platform and the contact force, with virtual prototype simulation, the correctness of the dynamic equation of the spatial parallel mechanism with spherical clearance joint and the analysis results are verified. The researches show that the change of clearance value has a great influence on the motion state of spherical clearance joint, and chaos phenomena appears in the clearance joint with the increase in the clearance value. And the impact phenomenon appears between the spherical joint elements, which makes the mechanism generated vibration.


Author(s):  
Ziming Chen ◽  
Wen-ao Cao ◽  
Huafeng Ding ◽  
Zhen Huang

Parallel mechanisms (PMs) with three degrees of freedom (DOFs) have been studied extensively, especially the PMs with two rotational and one translational DOFs (2R1T PMs). One major problem of the 2R1T PMs is the inherent parasitic motion. In this paper, a novel 2R1T symmetrical parallel mechanism with no parasitic motion is proposed and studied. The moving platform and the base of this mechanism are mirror symmetric with respect to a mid-plane. This moving platform can realize continuous rotation about any axis or any point on the mid-plane and can have continuous translation along the normal line of the mid-plane. The constraint and motion characteristics of this mechanism are analyzed. The kinematics solutions and the Jacobian matrix are derived. The singularities of this PM are discussed. In the end, several numerical examples are given to show the continuous rotations and continuous translations of this PM. This kind of PMs has outstanding advantages of easy path planning and controlling.


2019 ◽  
Vol 2019 ◽  
pp. 1-21
Author(s):  
Xiulong Chen ◽  
Yuewen Li

Clearances caused by machining accuracy and assembly requirements are regular, but they will be irregular due to the wear of the kinematic pairs. At present, there are few studies on wear of space kinematic pairs. In order to grasp the effect of irregular spherical joint clearance after wear on the dynamic response, a method for solving irregular clearance problems based on the Newton–Euler method is proposed, and the dynamic response of 4-UPS-UPU spatial parallel mechanism with irregular spherical joint clearance is investigated. The kinematic model and contact force model of the clearance of the spherical joint are derived. The dynamic model of the mechanism with spherical joint clearance is established by the Newton–Euler method. Based on the Archard model, the three-dimensional dynamic wear model for spherical joint with clearances is developed. The wear depth and wear position of the spherical joint are obtained by the numerical solution. The method of reconstructing the geometric morphology after wear is proposed based on the finite element thought. The solution of the irregular clearance problem is put forward, and the dynamic response of the mechanism after wear is also analyzed. The results show that the dynamic response curves of the mechanism fluctuate around the ideal curves whether before wear or after wear. Compared with the regular clearance before wear, the results of the irregular clearance after wear have a greater impact on acceleration and contact force, and the vibration of the acceleration and contact force curve become more intense than before. Moreover, the displacement, velocity, and acceleration curves of the irregular clearance show some hysteresis than that before wear. Therefore, it can be inferred that the irregular clearance has more adverse effects on the mechanism and aggravates the wear between the elements of the kinematic joint; in addition, the stability and the reliability of the mechanism can be reduced.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Chen Xiulong ◽  
Jia Yonghao

The goal of this work is to investigate the dynamic responses of the parallel mechanism with irregular clearances caused by wear and to further reveal the influences of multiple clearance interaction on wear. The motion model and the force model of spherical clearance joint based on a continuous contact force model and a static friction model are established. The dynamic equation of the spatial parallel mechanism considering two spherical clearance joints is derived. A general wear analysis strategy to establish spherical clearance joint with sustainable updation of the surface profile is presented, and the dynamic responses of parallel mechanism after wear are studied. The interaction between two wear joints with different initial clearance values is further investigated. The results show that it is necessary to consider the factor of irregular clearances caused by wear in the analysis of dynamics behavior for precision mechanisms. Proper distribution of clearance values can reduce wear of clearance joint and improve the useful life of mechanism to a certain extent. This work provides a foundation for life prediction and reliability analysis of parallel mechanisms.


2019 ◽  
Vol 16 (5) ◽  
pp. 172988141987621
Author(s):  
Xiulong Chen ◽  
Deyu Jiang

In order to design an ocean wave energy generator robot, a novel wave energy converter with parallel mechanism is designed and analyzed. A creative thinking that parallel mechanism can be applied to the wave energy converter is presented and verified during the wave energy using process. The design principles of the wave energy converter are given according to wave motion characteristics. Based on the principles, a novel wave energy converter with 4UPS/UP parallel mechanism is designed, which includes the design of the parallel mechanism, hydraulic cylinders, oil circuit, and converter integration. Then the kinematics model and statics model of the wave energy converter with 4UPS/UP parallel mechanism are derived by MATLAB and ADAMS; with these two methods, we found that the errors of rod length, velocity, and acceleration were 1.13 mm, 0.04 mm/s, and 0.38 mm/s2, respectively. Maximum stress error and maximum constraint moment errors were 1.52 N and 0.57 N·mm. So the correctness of the models is verified. This article can not only provide a reference for other types of parallel mechanisms applied to the wave energy converter, but also provide a theoretical foundation for the experimental prototype and practical application of the wave energy converter.


2021 ◽  
pp. 1-23
Author(s):  
Ganmin Zhu ◽  
Shimin Wei ◽  
Ying Zhang ◽  
Qizheng Liao

Abstract This paper demonstrates a novel geometric modeling and computational method of the family of spatial parallel mechanisms with 3-R(P)S structure for direct kinematic analysis based on the point pair relationship. The point pair relationship, which is derived from the framework of conformal geometric algebra (CGA), consists of the relationship between the point and the point pair and two point pairs. The first research is on the distance relationship between the point and the point pair. Secondly, the derivation of the distance relationship between two point pairs is based on the aforementioned result, which shows the mathematical homogeneity. Thirdly, two formulations for a point of the point pairs that satisfy the distance relationship between two point pairs are reduced. Fourthly, the point pair relationship is applied to solve the direct kinematic analysis of the spatial parallel mechanism with 3-R(P)S structure. Finally, four numerical examples are provided to verify the validity of the proposed algorithm. Overall, the proposed method can be generalized for the direct kinematics of a series of spatial parallel mechanisms with 3-R(P)S structure.


2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Haitao Liu ◽  
Ke Xu ◽  
Huiping Shen ◽  
Xianlei Shan ◽  
Tingli Yang

Abstract Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms. Therefore, the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of interest. Based on this purpose, this paper deals with the type synthesis of 1T2R parallel mechanisms by investigating the topological structure coupling-reducing of the 3UPS&UP parallel mechanism. With the aid of the theory of mechanism topology, the analysis of the topological characteristics of the 3UPS&UP parallel mechanism is presented, which shows that there are highly coupled motions and constraints amongst the limbs of the mechanism. Three methods for structure coupling-reducing of the 3UPS&UP parallel mechanism are proposed, resulting in eight new types of 1T2R parallel mechanisms with one or zero coupling degree. One obtained parallel mechanism is taken as an example to demonstrate that a mechanism with zero coupling degree has an explicit form for forward kinematics. The process of type synthesis is in the order of permutation and combination; therefore, there are no omissions. This method is also applicable to other configurations, and novel topological structures having simple forward kinematics can be obtained from an original mechanism via this method.


Sign in / Sign up

Export Citation Format

Share Document