scholarly journals Strength Training Session Induces Important Changes on Physiological, Immunological, and Inflammatory Biomarkers

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ayla Karine Fortunato ◽  
Washington Martins Pontes ◽  
Débora Maria Soares De Souza ◽  
Jéssica Santos Ferreira Prazeres ◽  
Lucas Soares Marcucci-Barbosa ◽  
...  

Strength exercise is a strategy applied in sports and physical training processes. It may induce skeletal muscle hypertrophy. The hypertrophy is dependent on the eccentric muscle actions and on the inflammatory response. Here, we evaluate the physiological, immunological, and inflammatory responses induced by a session of strength training with a focus on predominance of the eccentric muscle actions. Twenty volunteers were separated into two groups: the untrained group (UTG) and the trained group (TG). Both groups hold 4 sets of leg press, knee extensor, and leg curl at 65% of personal one-repetition maximum (1RM), 90 s of recovery, and 2″conc/3″eccen of duration of execution in each repetition. Blood samples were collected immediately before and after, 2 hours after, and 24 h after the end of the exercise session. The single session of strength training elevated the heart rate (HR), rating of perceived exertion (RPE), visual analog scale (VAS), and lactate blood level in UTG and TG. Creatine kinase (CK) levels were higher at 2 and 24 h after the end of the exercise in UTG and, in TG, only at 24 h. The number of white blood cells (WBC) and neutrophils increased in UTG and TG, post and 2 h after exercise. Lymphocytes increased postexercise but reduced 2 h after exercise in both groups, while the number of monocytes increased only immediately after the exercise session in UTG and TG. The strength training session elevated the levels of apelin and fatty acid-binding proteins-3 (FABP3) in both groups and brain-derived neurotrophic factor (BDNF) in TG. The single exercise session was capable of inducing elevated HR, RPE, lactate level, and CK levels. This protocol changed the count/total number of circulating immune cells in both groups (UTG and TG) and also increased the level of plasmatic apelin, BDNF, and FLTS1 only in TG and FABP3 myokines in both groups.

Author(s):  
Carl Foster ◽  
Daniel Boullosa ◽  
Michael McGuigan ◽  
Andrea Fusco ◽  
Cristina Cortis ◽  
...  

The session rating of perceived exertion (sRPE) method was developed 25 years ago as a modification of the Borg concept of rating of perceived exertion (RPE), designed to estimate the intensity of an entire training session. It appears to be well accepted as a marker of the internal training load. Early studies demonstrated that sRPE correlated well with objective measures of internal training load, such as the percentage of heart rate reserve and blood lactate concentration. It has been shown to be useful in a wide variety of exercise activities ranging from aerobic to resistance to games. It has also been shown to be useful in populations ranging from patients to elite athletes. The sRPE is a reasonable measure of the average RPE acquired across an exercise session. Originally designed to be acquired ∼30 minutes after a training bout to prevent the terminal elements of an exercise session from unduly influencing the rating, sRPE has been shown to be temporally robust across periods ranging from 1 minute to 14 days following an exercise session. Within the training impulse concept, sRPE, or other indices derived from sRPE, has been shown to be able to account for both positive and negative training outcomes and has contributed to our understanding of how training is periodized to optimize training outcomes and to understand maladaptations such as overtraining syndrome. The sRPE as a method of monitoring training has the advantage of extreme simplicity. While it is not ideal for the precise recording of the details of the external training load, it has large advantages relative to evaluating the internal training load.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sandro S. Ferreira ◽  
Kleverton Krinski ◽  
Ragami C. Alves ◽  
Mariana L. Benites ◽  
Paulo E. Redkva ◽  
...  

The rating of perceived exertion (RPE) is ability to detect and interpret organic sensations while performing exercises. This method has been used to measure the level of effort that is felt during weight-training at a given intensity. The purpose of this investigation was to compare session RPE values with those of traditional RPE measurements for different weight-training muscle actions, performed together or separately. Fourteen women with no former weight-training experience were recruited for the investigation. All participants completed five sessions of exercise: familiarization, maximum force, concentric-only (CONC-only), eccentric-only (ECC-only), and dynamic (DYN = CONC + ECC). The traditional RPE method was measured after each series of exercises, and the session RPE was measured 30 min after the end of the training session. The statistical analyses used were the pairedt-test, one-way analysis of variance, and repeated measures analysis of variance. Significant differences between traditional RPE and session RPE for DYN, CONC, and ECC exercises were not found. This investigation demonstrated that session RPE is similar to traditional RPE in terms of weight-training involving concentric, eccentric, or dynamic muscle exercises, and that it can be used to prescribe and monitor weight-training sessions in older subjects.


2008 ◽  
Vol 20 (3) ◽  
pp. 333-341 ◽  
Author(s):  
Michael R. McGuigan ◽  
Abdulaziz Al Dayel ◽  
David Tod ◽  
Carl Foster ◽  
Robert U. Newton ◽  
...  

The purpose of this study was to investigate the use of the OMNI Resistance Exercise scale (OMNI-RES) for monitoring the intensity of different modes of resistance training in children who are overweight or obese. Sixty-one children (mean age = 9.7 ± 1.4 years) performed three resistance training sessions every week for 4 weeks. Each session consisted of three sets of 3–15 repetitions of eight different resistance exercises. OMNI-RES RPE measures (0–10) were obtained following each set and following the end of the exercise session. There was a significant difference between average RPE (1.68 ± 0.61) and Session RPE (3.10 ± 1.18) during the 4 weeks of training (p < .05). There was no significant change in session RPE over the 4 weeks of training. The correlation coefficient between average and session RPE values was significant (r = .88, p < .05). The findings of the current study indicate that the RPE values are higher when OMNI-RES measures are obtained following the whole training session than when obtained following every single set of exercise. This suggests that in children the session RPE provides different information to the average RPE across the entire session.


2020 ◽  
Vol 12 (1) ◽  
pp. 91-100
Author(s):  
Jaime Della Corte ◽  
Wendell Luiz M. Pereira ◽  
Eduardo Emil Lacerda S. Corrêa ◽  
João Gabriel Miranda de Oliveira ◽  
Bruno Lucas Pinheiro Lima ◽  
...  

SummaryStudy aim: To evaluate the effect of power and muscle strength training on skin temperature and the performance of the vertical jump with countermovement (CMJ).Material and methods: The sample consisted of four male basketball athletes of the under-17 category (age: 15.75 ± 1.0 years). 48 hours after anthropometric evaluation and determination of the loads for 1 repetition maximum (1RM) in the leg extension exercise, the athletes were subjected, through crossover-type entrance, to power (PTP) and strength (STP) training protocols. The protocols consisted of three sets with loads of 60% and 90% of 1RM for PTP and STP, respectively. Thermographic images of the thighs were taken before and immediately after each training session.Results: There were significant differences in results between the two training protocols, with increased total repetitions (t = 13.481; p < 0.05) and total training volume (t = 15.944; p < 0.05) in the PTP, and increase in the % of 1RM (t = 33.903; p < 0.05) and rating of perceived exertion (t = 6.755; p < 0.05) in the STP. The skin temperature before and after PTP and STP showed no significant differences. In the post-STP, the CMJ presented significant reductions in height (t = 3.318; p < 0.05), flight time (t = 3.620; p < 0.05), velocity (t = 3.502; p < 0.05), and force (t = 4.381; p < 0.05). There were no significant differences in pre-and post-STP CMJ.Conclusions: Power and maximum strength training in the leg extension exercise performed until concentric failure appears to be a method that induces thermal stress on the skin. This training directly influenced the performance of the vertical jump after the stimulus.


2021 ◽  
Vol 16 (1) ◽  
pp. 149-153
Author(s):  
Jac Orie ◽  
Nico Hofman ◽  
Laurentius A. Meerhoff ◽  
Arno Knobbe

At the Olympic level, optimally distributing training intensity is crucial for maximizing performance. Purpose: The authors evaluated the effect of training-intensity distribution on anaerobic power as a substitute for 1500-m speed-skating performance in the 4 y leading up to an Olympic gold medal. Methods: During the preparation phase of the speed-skating season, anaerobic power was recorded periodically (n = 15) using the mean power (in watts) with a 30-s Wingate test. For each training session in the 4 wk prior to each Wingate test, the volume (in hours), training type (specific, simulation, nonspecific, and strength training), and the rating of perceived exertion (RPE; CR-10) were recorded. Results: Compared with the 8 lowest, the 7 highest-scoring tests were preceded by a significantly (P < .01) higher volume of strength training. Furthermore, the RPE distribution of the number of nonspecific training sessions was significantly different (P < .01). Significant (P < .05) correlations highlighted that a larger nonspecific training volume in the lower intensities RPE 2 (r = .735) and 3 (r = .592) was associated positively and the medium intensities RPE 4 (r = −.750) and 5 (r = −.579) negatively with Wingate performance. Conclusion: For the subject, the best results were attained with a high volume of strength training and the bulk of nonspecific training at RPE 2 and 3, and specifically not at the adjoining RPE 4 and 5. These findings are surprising given the aerobic nature of training at RPE 2 and 3 and the importance of anaerobic capacity in this middle-distance event.


Author(s):  
Sullivan Coppalle ◽  
Guillaume Ravé ◽  
Jason Moran ◽  
Iyed Salhi ◽  
Abderraouf Ben Abderrahman ◽  
...  

This study aimed to compare the training load of a professional under-19 soccer team (U-19) to that of an elite adult team (EAT), from the same club, during the in-season period. Thirty-nine healthy soccer players were involved (EAT [n = 20]; U-19 [n = 19]) in the study which spanned four weeks. Training load (TL) was monitored as external TL, using a global positioning system (GPS), and internal TL, using a rating of perceived exertion (RPE). TL data were recorded after each training session. During soccer matches, players’ RPEs were recorded. The internal TL was quantified daily by means of the session rating of perceived exertion (session-RPE) using Borg’s 0–10 scale. For GPS data, the selected running speed intensities (over 0.5 s time intervals) were 12–15.9 km/h; 16–19.9 km/h; 20–24.9 km/h; >25 km/h (sprint). Distances covered between 16 and 19.9 km/h, > 20 km/h and >25 km/h were significantly higher in U-19 compared to EAT over the course of the study (p =0.023, d = 0.243, small; p = 0.016, d = 0.298, small; and p = 0.001, d = 0.564, small, respectively). EAT players performed significantly fewer sprints per week compared to U-19 players (p = 0.002, d = 0.526, small). RPE was significantly higher in U-19 compared to EAT (p =0.001, d = 0.188, trivial). The external and internal measures of TL were significantly higher in the U-19 group compared to the EAT soccer players. In conclusion, the results obtained show that the training load is greater in U19 compared to EAT.


2018 ◽  
Vol 13 (5) ◽  
pp. 804-809 ◽  
Author(s):  
Luciana S Decimoni ◽  
Victor M Curty ◽  
Livia Almeida ◽  
Alexander J Koch ◽  
Jeffrey M Willardson ◽  
...  

We investigated the effect of carbohydrate mouth rinsing on resistance exercise performance. Fifteen recreationally trained women (age 26 ± 4 y; height 1.61.9 ± 5.1 m; weight 59.5 ± 8.2 kg) completed two resistance exercise bouts consisting of three sets of five exercises (half-squat, leg press, bench press, military press, and seated row) to volitional fatigue with a 10 repetition-maximum load. Immediately prior to and during the middle of each exercise bout, subjects mouth rinsed for 10 s with 100 mL of either a 6% maltodextrin solution (CHO) or an artificially flavored solution (PLA) in a randomized, double-blind, counterbalanced fashion. Heart rate and perceived exertion were compared between conditions using a 2 (conditions) × 15 (time points) repeated measures ANOVA. Significant main effects were further analyzed using pairwise comparisons with Bonferroni post hoc tests. Total volume (exercises * sets * repetitions * load) between sessions was compared with a Student’s t-test. Statistical significance was set at p ≤ 0.05 level of confidence. The CHO resulted in more repetitions performed during half-squat, bench press, military press, and seated row, for a significantly greater (∼12%) total volume load lifted versus PLA ( p = 0.039, ES: 0.49). Rating of perceived exertion was also significantly lower in the CHO versus PLA ( p = 0.020, ES: 0.28). These data indicate that CHO mouth rinsing can enhance high-volume resistance exercise performance and lower ratings of perceived exertion.


2019 ◽  
Vol 14 (7) ◽  
pp. 980-986
Author(s):  
Peter Ibbott ◽  
Nick Ball ◽  
Marijke Welvaert ◽  
Kevin G. Thompson

Purpose: To assess pacing strategies using prescribed and self-selected interset rest periods and their influence on performance in strength-trained athletes. Methods: A total of 16 strength-trained male athletes completed 3 randomized heavy strength-training sessions (5 sets and 5 repetitions) with different interset rest periods. The interset rest periods were 3 min (3MIN), 5 min (5MIN), and self-selected (SS). Mechanical (power, velocity, work, and displacement), surface electromyography (sEMG), and subjective (rating of perceived exertion) and readiness-to-lift data were recorded for each set. Results: SS-condition interset rest periods increased from sets 1 to 4 (from 207.52 to 277.71 s; P = .01). No differences in mechanical performance were shown between the different interset rest-period conditions. Power output (210 W; 8.03%) and velocity (0.03 m·s−1; 6.73%) decreased as sets progressed for all conditions (P < .001) from set 1 to set 5. No differences in sEMG activity between conditions were shown; however, vastus medialis sEMG decreased as the sets progressed for each condition (1.75%; P = .005). All conditions showed increases in rating of perceived exertion as sets progressed (set 1 = 6.1, set 5 = 7.9; P < .001). Participants reported greater readiness to lift in the 5MIN condition (7.81) than in the 3MIN (7.09) and SS (7.20) conditions (P < .001). Conclusions: Self-selecting interset rest periods does not significantly change performance compared with 3MIN and 5MIN conditions. Given the opportunity, athletes will vary their interset rest periods to complete multiple sets of heavy strength training. Self-selection of interset rest periods may be a feasible alternative to prescribed interset rest periods.


2019 ◽  
Vol 14 (6) ◽  
pp. 829-840 ◽  
Author(s):  
Timothy J.H. Lathlean ◽  
Paul B. Gastin ◽  
Stuart V. Newstead ◽  
Caroline F. Finch

Purpose:To investigate associations between load (training and competition) and wellness in elite junior Australian Football players across 1 competitive season.Methods:A prospective cohort study was conducted during the 2014 playing season in 562 players from 9 teams. Players recorded their training and match intensities according to the session-rating-of-perceived-exertion (sRPE) method. Based on sRPE player loads, a number of load variables were quantified, including cumulative load and the change in load across different periods of time (including the acute-to-chronic load ratio). Wellness was quantified using a wellness index including sleep, fatigue, soreness, stress, and mood on a Likert scale from 1 to 5.Results:Players spent an average of 85 (21) min in each match and 65 (31) min per training session. Average match loads were 637 (232) arbitrary units, and average training loads were 352 (233) arbitrary units. Over the 24 wk of the 2014 season, overall wellness had a significant linear negative association with 1-wk load (B = −0.152; 95% confidence interval, −0.261 to −0.043;P = .006) and an inverseU-curve relationship with session load (B = −0.078; 95% confidence interval, 0.143 to 0.014;P = .018). Mood, stress, and soreness were all found to have associations with load.Conclusions:This study demonstrates that load (within a session and across the week) is important in managing the wellness of elite junior Australian Football players. Quantifying loads and wellness at this level will help optimize player management and has the potential to reduce the risk of adverse events such as injury.


2019 ◽  
Vol 14 (7) ◽  
pp. 941-948 ◽  
Author(s):  
Henrikas Paulauskas ◽  
Rasa Kreivyte ◽  
Aaron T. Scanlan ◽  
Alexandre Moreira ◽  
Laimonas Siupsinskas ◽  
...  

Purpose:To assess the weekly fluctuations in workload and differences in workload according to playing time in elite female basketball players.Methods:A total of 29 female basketball players (mean [SD] age 21 [5] y, stature 181 [7] cm, body mass 71 [7] kg, playing experience 12 [5] y) belonging to the 7 women’s basketball teams competing in the first-division Lithuanian Women’s Basketball League were recruited. Individualized training loads (TLs) and game loads (GLs) were assessed using the session rating of perceived exertion after each training session and game during the entire in-season phase (24 wk). Percentage changes in total weekly TL (weekly TL + GL), weekly TL, weekly GL, chronic workload, acute:chronic workload ratio, training monotony, and training strain were calculated. Mixed linear models were used to assess differences for each dependent variable, with playing time (low vs high) used as fixed factor and subject, week, and team as random factors.Results:The highest changes in total weekly TL, weekly TL, and acute:chronic workload ratio were evident in week 13 (47%, 120%, and 49%, respectively). Chronic workload showed weekly changes ≤10%, whereas monotony and training strain registered highest fluctuations in weeks 17 (34%) and 15 (59%), respectively. A statistically significant difference in GL was evident between players completing low and high playing times (P = .026, moderate), whereas no significant differences (P > .05) were found for all other dependent variables.Conclusions:Coaches of elite women’s basketball teams should monitor weekly changes in workload during the in-season phase to identify weeks that may predispose players to unwanted spikes and adjust player workload according to playing time.


Sign in / Sign up

Export Citation Format

Share Document