scholarly journals Two-Step Root-MUSIC for Direction of Arrival Estimation without EVD/SVD Computation

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Feng-Gang Yan ◽  
Shuai Liu ◽  
Jun Wang ◽  
Ming Jin

Most popular techniques for super-resolution direction of arrival (DOA) estimation rely on an eigen-decomposition (EVD) or a singular value decomposition (SVD) computation to determine the signal/noise subspace, which is computationally expensive for real-time applications. A two-step root multiple signal classification (TS-root-MUSIC) algorithm is proposed to avoid the complex EVD/SVD computation using a uniform linear array (ULA) based on a mild assumption that the number of signals is less than half that of sensors. The ULA is divided into two subarrays, and three noise-free cross-correlation matrices are constructed using data collected by the two subarrays. A low-complexity linear operation is derived to obtain a rough noise subspace for a first-step DOA estimate. The performance is further enhanced in the second step by using the first-step result to renew the previous estimated noise subspace with a slightly increased complexity. The new technique can provide close root mean square error (RMSE) performance to root-MUSIC with reduced computational burden, which are verified by numerical simulations.

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4295 ◽  
Author(s):  
Bong-seok Kim ◽  
Youngseok Jin ◽  
Jonghun Lee ◽  
Sangdong Kim

This paper proposes a low complexity multiple-signal-classifier (MUSIC)-based direction-of-arrival (DOA) detection algorithm for frequency-modulated continuous-wave (FMCW) vital radars. In order to reduce redundant complexity, the proposed algorithm employs characteristics of distance between adjacent arrays having trade-offs between field of view (FOV) and resolution performance. First, the proposed algorithm performs coarse DOA estimation using fast Fourier transform. On the basis of the coarse DOA estimation, the number of channels as input of the MUSIC algorithm are selected. If the estimated DOA is smaller than 30°, it implies that there is an FOV margin. Therefore, the proposed algorithm employs only half of the channels, that is, it is the same as doubling the spacing between arrays. By doing so, the proposed algorithm achieves more than 40% complexity reduction compared to the conventional MUSIC algorithm while achieving similar performance. By experiments, it is shown that the proposed algorithm despite the low complexity is enable to distinguish the adjacent DOA in a practical environment.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Feng-Gang Yan ◽  
Jun Wang ◽  
Shuai Liu ◽  
Yi Shen ◽  
Ming Jin

A low-complexity algorithm is presented to dramatically reduce the complexity of the multiple signal classification (MUSIC) algorithm for direction of arrival (DOA) estimation, in which both tasks of eigenvalue decomposition (EVD) and spectral search are implemented with efficient real-valued computations, leading to about 75% complexity reduction as compared to the standard MUSIC. Furthermore, the proposed technique has no dependence on array configurations and is hence suitable for arbitrary array geometries, which shows a significant implementation advantage over most state-of-the-art unitary estimators including unitary MUSIC (U-MUSIC). Numerical simulations over a wide range of scenarios are conducted to show the performance of the new technique, which demonstrates that with a significantly reduced computational complexity, the new approach is able to provide a close accuracy to the standard MUSIC.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Fangqing Wen ◽  
Gong Zhang

A low complexity monostatic cross multiple-in multiple-out (MIMO) radar scheme is proposed in this paper. The minimum-redundancy linear array (MRLA) is introduced in the cross radar to improve the efficiency of the array elements. The two-dimensional direction-of-arrival (DOA) estimation problem links to the trilinear model, which automatically pairs the estimated two-dimensional angles, requiring neither eigenvalue decomposition of received signal covariance matrix nor spectral peak searching. The proposed scheme performs better than the uniform linear arrays (ULA) configuration under the same conditions, and the proposed algorithm has less computational complexity than that of multiple signal classification (MUSIC) algorithm. Simulation results show the effectiveness of our scheme.


2014 ◽  
Vol 530-531 ◽  
pp. 530-533
Author(s):  
Jin Fang Cheng ◽  
Chao Ran Zhang ◽  
Wei Zhang

The MUSIC algorithm cannot deal with the problem of DOA estimation of coherent sources, this paper proposes the USTC (unitary spatio-temporal correlation matrices)-MUSIC algorithm using single vector hydrophone to solve this problem, by utilizing the unitary spatio-temporal correlation matrix instead of the covariance matrix. The simulation results demonstrate that the USTC-MUSIC algorithm has a better ability to distinguish the coherent sources from different directions than the spatial smoothing MUSIC algorithm.


Author(s):  
Fan-Xu Meng ◽  
Ze-Tong Li ◽  
Xutao Yu ◽  
Zaichen Zhang

Abstract The multiple signal classification (MUSIC) algorithm is a well-established method to evaluate the direction of arrival (DOA) of signals. However, the construction and eigen-decomposition of the sample covariance matrix (SCM) are computationally costly for MUSIC in hybrid multiple input multiple output (MIMO) systems, which limits the application and advancement of the algorithm. In this paper, we present a novel quantum method for MUSIC in hybrid MIMO systems. Our scheme makes the following three contributions. First, the quantum subroutine for constructing the approximate SCM is designed, along with the quantum circuit for the steering vector and a proposal for quantum singular vector transformation. Second, the variational density matrix eigensolver is proposed to determine the signal and noise subspaces utilizing the destructive swap test. As a proof of principle, we conduct two numerical experiments using a quantum simulator. Finally, the quantum labelling procedure is explored to determine the DOA. The proposed quantum method can potentially achieve exponential speedup on certain parameters and polynomial speedup on others under specific moderate circumstances, compared with their classical counterparts.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Hamid Ali Mirza ◽  
Laeeq Aslam ◽  
Muhammad Asif Zahoor Raja ◽  
Naveed Ishtiaq Chaudhary ◽  
Ijaz Mansoor Qureshi ◽  
...  

In this paper, a method for solving grid mismatch or off-grid target is presented for direction of arrival (DOA) estimation problem using compressive sensing (CS) technique. Location of the sources are at few angles as compare to the entire angle domain, i.e., spatially sparse sources, and their location can be estimated using CS methods with ability of achieving super resolution and estimation with a smaller number of samples. Due to grid mismatch in CS techniques, the source energy is distributed among the adjacent grids. Therefore, a fitness function is introduced which is based on the difference of the source energy among the adjacent grids. This function provides the best discretization value for the grid through iterative grid refinement. The effectiveness of the proposed scheme is verified through extensive simulations for different number of sources.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2788 ◽  
Author(s):  
Yuehao Guo ◽  
Xianpeng Wang ◽  
Wensi Wang ◽  
Mengxing Huang ◽  
Chong Shen ◽  
...  

In the paper, the estimation of joint direction-of-departure (DOD) and direction-of-arrival (DOA) for strictly noncircular targets in multiple-input multiple-output (MIMO) radar with unknown mutual coupling is considered, and a tensor-based angle estimation method is proposed. In the proposed method, making use of the banded symmetric Toeplitz structure of the mutual coupling matrix, the influence of the unknown mutual coupling is removed in the tensor domain. Then, a special enhancement tensor is formulated to capture both the noncircularity and inherent multidimensional structure of strictly noncircular signals. After that, the higher-order singular value decomposition (HOSVD) technology is applied for estimating the tensor-based signal subspace. Finally, the direction-of-departure (DOD) and direction-of-arrival (DOA) estimation is obtained by utilizing the rotational invariance technique. Due to the use of both noncircularity and multidimensional structure of the detected signal, the algorithm in this paper has better angle estimation performance than other subspace-based algorithms. The experiment results verify that the method proposed has better angle estimation performance.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Feng Zhao ◽  
Xia Hao ◽  
Hongbin Chen

The estimation accuracy of direction-of-departure (DOD) and direction-of-arrival (DOA) is reduced because of Doppler shifts caused by the high-speed moving sources. In this paper, an improved DOA estimation method which combines the forward-backward spatial smoothing (FBSS) technique with the MUSIC algorithm is proposed for virtual MIMO array signals in high mobility scenarios. Theoretical analysis and experiment results demonstrate that the resolution capability can be significantly improved by using the proposed method compared to the MUSIC algorithm for the moving sources with limited array elements, especially the DOA which can still be accurately estimated when the sources are much closely spaced.


Sign in / Sign up

Export Citation Format

Share Document