scholarly journals An Efficient Contact Model for the Simulation of Cargo Airdrop Extraction Phase

2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Leiming Ning ◽  
Jichang Chen ◽  
Mingbo Tong

A high-fidelity cargo airdrop simulation requires the accurate modeling of the contact dynamics between an aircraft and its cargo. This paper presents a general and efficient contact-friction model for the simulation of aircraft-cargo coupling dynamics during an airdrop extraction phase. The proposed approach has the same essence as the finite element node-to-segment contact formulation, which leads to a flexible, straightforward, and efficient code implementation. The formulation is developed under an arbitrary moving frame with both aircraft and cargo treated as general six degrees-of-freedom rigid bodies, thus eliminating the restrictions of lateral symmetric assumptions in most existing methods. Moreover, the aircraft-cargo coupling algorithm is discussed in detail, and some practical implementation details are presented. The accuracy and capability of the present method are demonstrated through four numerical examples with increasing complexity and fidelity.

Author(s):  
Shahriar G. Ahmadi ◽  
Tamer M. Wasfy ◽  
Hatem M. Wasfy ◽  
Jeanne M. Peters

A high-fidelity multibody dynamics model for simulating a backhoe digging operation is presented. The backhoe components including: frame, manipulator, track, wheels and sprockets are modeled as rigid bodies. The soil is modeled using cubic shaped particles for simulating sand with appropriate inter-particle normal and frictional forces. A penalty technique is used to impose both joint and normal contact constraints (including track-wheels, track-terrain, bucket-particles and particles-particles contact). An asperity-based friction model is used to model joint and contact friction. A Cartesian Eulerian grid contact search algorithm is used to allow fast contact detection between particles. A recursive bounding box contact search algorithm is used to allow fast contact detection between polygonal contact surfaces. The governing equations of motion are solved along with joint/constraint equations using a time-accurate explicit solution procedure. The model can help improve the performance of construction equipment by predicting the actuator and joint forces and the vehicle stability during digging for various vehicle design alternatives.


Author(s):  
Tamer M. Wasfy ◽  
James O’Kins

A time-accurate finite element model for predicting the dynamic response of tracked vehicles is presented. The model supports flexible continuous belt-type tracks and segmented-tracks consisting of rigid and/or flexible links connected using revolute joints. The flexible multibody system representing the tracked vehicle is modeled using rigid bodies, flexible bodies, joints and actuators. Flexible bodies are modeled using total-Lagrangian brick, membrane, beam, truss and linear/rotational spring elements. The penalty method is used to impose the joint/contact constraints. An asperity-based friction model is used to model joint/contact friction. A recursive bounding box contact search algorithm is used to allow fast contact detection between finite elements and other elements as well as general triangular/quadrilateral surfaces. The governing equations of motion are solved along with joint/constraint equations using a time-accurate explicit solution procedure. The model can help improve the design of tracked vehicles including increasing the vehicle’s stability and durability.


Author(s):  
Jiechi Xu ◽  
Joseph R. Baumgarten

Abstract In the present paper a general systematic modeling procedure has been conducted in deriving dynamic equations of motion using Lagrange’s approach for a spatial multibody structural system involving rigid bodies and elastic members. Both the rigid body degrees of freedom and the elastic degrees of freedom are considered as unknown generalized coordinates of the entire system in order to reflect the nature of mutually coupled rigid body and elastic motions. The assumption of specified rigid body gross motion is no longer necessary in the equation derivation and the resulting differential equations are highly nonlinear. Finite element analysis (FEA) with direct stiffness method has been employed to model the flexible substructures. Nonlinear coupling terms between the rigid body and elastic motions are fully derived and are explicitly expressed in matrix form. The equations of motion of each individual subsystem are formulated based on a moving frame instead of a traditional inertial frame. These local level equations of motion are assembled to obtain the system equations with the implementation of geometric boundary conditions by means of a compatibility matrix.


Author(s):  
Tamer M. Wasfy

A time-accurate high-fidelity finite element model for timing belt-drives is presented. The belt is modeled using flexible spatial lumped parameters beam elements. Each finite element belt node can be considered as a rigid body whose contact geometry is used to model the contact surfaces of the belt teeth. The sprockets and pulleys are modeled as rigid bodies. A penalty model is used to impose the joint/contact constraints. An asperity-based friction model is used to model joint/contact friction. A recursive bounding box contact search algorithm is used to allow fast contact detection between contact points on the belt surface (master contact surface) and a polygonal surface representation of the sprockets/pulleys. The governing equations of motion are solved along with joint/constraint equations using a time-accurate explicit solution procedure. The model is partially validated by comparing to a previously published steady-state study where the belt tooth loads over the driven sprocket were experimentally measured. The model can help improve the design of timing belts including increasing the range of operating speeds, reduce the vibrations and noise and increase the drive durability.


Author(s):  
Ou Ma ◽  
Jianxun Liang ◽  
Steven Fillmore

This paper describes a 2D bristle contact friction model which is capable of modeling and simulating frictional behavior in both sliding and sticking regimes occurring in general 3D rigid-body contact. The model extends the 1D integrated bristle friction model to a 2D space by allowing the “bristle spring” to not only stretch along the direction of the relative velocity but also rotate due to the direction change of the velocity or motion trend in the common tangential plane of the contacting surfaces involved at the contact point of interest. With such an extension, the resulting friction model can be readily used to compute 3D contact friction forces in both sticking and sliding regimes for a general 3D contact dynamics model working with a multibody dynamics simulation application. Several simulation examples are provided to demonstrate the effectiveness of the model for predicting the experimentally seen frictional behavior such as sticking, stickslip, and sliding.


Author(s):  
Cagkan Yildiz ◽  
Tamer M. Wasfy ◽  
Hatem M. Wasfy ◽  
Jeanne M. Peters

In order to accurately predict the fatigue life and wear life of a belt, the various stresses that the belt is subjected to and the belt slip over the pulleys must be accurately calculated. In this paper, the effect of material and geometric parameters on the steady-state stresses (including normal, tangential and axial stresses), average belt slip for a flat belt, and belt-drive energy efficiency is studied using a high-fidelity flexible multibody dynamics model of the belt-drive. The belt’s rubber matrix is modeled using three-dimensional brick elements and the belt’s reinforcements are modeled using one dimensional truss elements. Friction between the belt and the pulleys is modeled using an asperity-based Coulomb friction model. The pulleys are modeled as cylindrical rigid bodies. The equations of motion are integrated using a time-accurate explicit solution procedure. The material parameters studied are the belt-pulley friction coefficient and the belt axial stiffness and damping. The geometric parameters studied are the belt thickness and the pulleys’ centers distance.


2010 ◽  
Vol 166-167 ◽  
pp. 457-462
Author(s):  
Dan Verdes ◽  
Radu Balan ◽  
Máthé Koppány

Parallel robots find many applications in human-systems interaction, medical robots, rehabilitation, exoskeletons, to name a few. These applications are characterized by many imperatives, with robust precision and dynamic workspace computation as the two ultimate ones. This paper presents kinematic analysis, workspace, design and control to 3 degrees of freedom (DOF) parallel robots. Parallel robots have received considerable attention from both researchers and manufacturers over the past years because of their potential for high stiffness, low inertia and high speed capability. Therefore, the 3 DOF translation parallel robots provide high potential and good prospects for their practical implementation in human-systems interaction.


2012 ◽  
Vol 45 (17) ◽  
pp. 207-212
Author(s):  
Chyon Hae Kim ◽  
Shimon Sugawara ◽  
Shigeki Sugano

Author(s):  
Joseph Pegna

Abstract In the quest for ever finer levels of technology integration, mechanical linkages reach their precision limits at about 5micrometers per meter of workspace. Beyond this physical limit, all six dimensional degrees of freedom need to be precisely ascertained to account for mechanical imperfections. This paper substantiates Wu’s vision of “precision machines without precision machinery.” A formulation and statistical characterization of position and orientation error propagation in rigid bodies are presented for two extreme models of measurement. It is shown that error distribution is uniquely dependent upon the design of the measurement plan. The theoretical foundations presented were evolved in the course of designing precision machinery. Other potential applications include: fixture design, metrology, and geometric tolerance verification.


Author(s):  
Rinat Galiautdinov

In this article, the author considers the possibility of applying modern IT technologies to implement information processing algorithms in UAV motion control system. Filtration of coordinates and motion parameters of objects under a priori uncertainty is carried out using nonlinear adaptive filters: Kalman and Bayesian filters. The author considers numerical methods for digital implementation of nonlinear filters based on the convolution of functions, the possibilities of neural networks and fuzzy logic for solving the problems of tracking UAV objects (or missiles), the math model of dynamics, the features of the practical implementation of state estimation algorithms in the frame of added additional degrees of freedom. The considered algorithms are oriented on solving the problems in real time using parallel and cloud computing.


Sign in / Sign up

Export Citation Format

Share Document