High-Fidelity Modeling of Flexible Timing Belts Using an Explicit Finite Element Code

Author(s):  
Tamer M. Wasfy

A time-accurate high-fidelity finite element model for timing belt-drives is presented. The belt is modeled using flexible spatial lumped parameters beam elements. Each finite element belt node can be considered as a rigid body whose contact geometry is used to model the contact surfaces of the belt teeth. The sprockets and pulleys are modeled as rigid bodies. A penalty model is used to impose the joint/contact constraints. An asperity-based friction model is used to model joint/contact friction. A recursive bounding box contact search algorithm is used to allow fast contact detection between contact points on the belt surface (master contact surface) and a polygonal surface representation of the sprockets/pulleys. The governing equations of motion are solved along with joint/constraint equations using a time-accurate explicit solution procedure. The model is partially validated by comparing to a previously published steady-state study where the belt tooth loads over the driven sprocket were experimentally measured. The model can help improve the design of timing belts including increasing the range of operating speeds, reduce the vibrations and noise and increase the drive durability.

Author(s):  
Tamer M. Wasfy ◽  
James O’Kins

A time-accurate finite element model for predicting the dynamic response of tracked vehicles is presented. The model supports flexible continuous belt-type tracks and segmented-tracks consisting of rigid and/or flexible links connected using revolute joints. The flexible multibody system representing the tracked vehicle is modeled using rigid bodies, flexible bodies, joints and actuators. Flexible bodies are modeled using total-Lagrangian brick, membrane, beam, truss and linear/rotational spring elements. The penalty method is used to impose the joint/contact constraints. An asperity-based friction model is used to model joint/contact friction. A recursive bounding box contact search algorithm is used to allow fast contact detection between finite elements and other elements as well as general triangular/quadrilateral surfaces. The governing equations of motion are solved along with joint/constraint equations using a time-accurate explicit solution procedure. The model can help improve the design of tracked vehicles including increasing the vehicle’s stability and durability.


Author(s):  
Shahriar G. Ahmadi ◽  
Tamer M. Wasfy ◽  
Hatem M. Wasfy ◽  
Jeanne M. Peters

A high-fidelity multibody dynamics model for simulating a backhoe digging operation is presented. The backhoe components including: frame, manipulator, track, wheels and sprockets are modeled as rigid bodies. The soil is modeled using cubic shaped particles for simulating sand with appropriate inter-particle normal and frictional forces. A penalty technique is used to impose both joint and normal contact constraints (including track-wheels, track-terrain, bucket-particles and particles-particles contact). An asperity-based friction model is used to model joint and contact friction. A Cartesian Eulerian grid contact search algorithm is used to allow fast contact detection between particles. A recursive bounding box contact search algorithm is used to allow fast contact detection between polygonal contact surfaces. The governing equations of motion are solved along with joint/constraint equations using a time-accurate explicit solution procedure. The model can help improve the performance of construction equipment by predicting the actuator and joint forces and the vehicle stability during digging for various vehicle design alternatives.


Author(s):  
Tamer M. Wasfy ◽  
Michael J. Leamy

A time-accurate explicit time-integration finite element code is used to simulate the dynamic response of synchronous belts-drives. The belt is modeled using beam or truss elements. The sprockets are modeled as cylindrical rigid bodies. Normal contact between the belt and a sprocket is modeled using the penalty technique and friction is modeled using an asperity-based approximate Coulomb friction model. The belt teeth/grooves are assumed to be located at the belt nodes (every fixed number of belt nodes). The nodes in-between teeth are subjected to the normal contact and tangential friction forces. The belt and sprocket teeth are assumed to be trapezoidal. The equivalent belt-sprocket tooth stiffness and damping coefficients in the normal tooth contact direction are used to calculate a normal tooth contact force at the belt teeth nodes. The tooth contact model also includes the effect of the tooth engagement tolerance. For validation purposes, a two-sprocket drive is modeled and a comparison is made between tooth loads predicted by the finite element model and experimental data available in the literature. Reasonable agreement between the simulation and experimental results is found of the drive’s tooth loads. Also, the dynamic response of a hybrid sprocket – flat pulley belt-drive is studied.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Leiming Ning ◽  
Jichang Chen ◽  
Mingbo Tong

A high-fidelity cargo airdrop simulation requires the accurate modeling of the contact dynamics between an aircraft and its cargo. This paper presents a general and efficient contact-friction model for the simulation of aircraft-cargo coupling dynamics during an airdrop extraction phase. The proposed approach has the same essence as the finite element node-to-segment contact formulation, which leads to a flexible, straightforward, and efficient code implementation. The formulation is developed under an arbitrary moving frame with both aircraft and cargo treated as general six degrees-of-freedom rigid bodies, thus eliminating the restrictions of lateral symmetric assumptions in most existing methods. Moreover, the aircraft-cargo coupling algorithm is discussed in detail, and some practical implementation details are presented. The accuracy and capability of the present method are demonstrated through four numerical examples with increasing complexity and fidelity.


Author(s):  
Cagkan Yildiz ◽  
Tamer M. Wasfy ◽  
Hatem M. Wasfy ◽  
Jeanne M. Peters

In order to accurately predict the fatigue life and wear life of a belt, the various stresses that the belt is subjected to and the belt slip over the pulleys must be accurately calculated. In this paper, the effect of material and geometric parameters on the steady-state stresses (including normal, tangential and axial stresses), average belt slip for a flat belt, and belt-drive energy efficiency is studied using a high-fidelity flexible multibody dynamics model of the belt-drive. The belt’s rubber matrix is modeled using three-dimensional brick elements and the belt’s reinforcements are modeled using one dimensional truss elements. Friction between the belt and the pulleys is modeled using an asperity-based Coulomb friction model. The pulleys are modeled as cylindrical rigid bodies. The equations of motion are integrated using a time-accurate explicit solution procedure. The material parameters studied are the belt-pulley friction coefficient and the belt axial stiffness and damping. The geometric parameters studied are the belt thickness and the pulleys’ centers distance.


Author(s):  
Tamer M. Wasfy ◽  
Michael J. Leamy

A time-accurate explicit time-integration finite element code is used to simulate the dynamic response of tires including tire/pavement and tire/rim frictional contact. Eight-node brick elements, which do not exhibit locking or spurious modes, are used to model the tire’s rubber. Those elements enable use of one element through the thickness for modeling the tire. The bead, tread and ply are modeled using truss or beam elements along the tire circumference and meridian directions with appropriate stiffness and damping properties. The tire wheel is modeled as a rigid cylinder. Normal contact between the tire and the wheel and between the tire and the pavement is modeled using the penalty technique. Friction is modeled using an asperity-based approximate Coulomb friction model.


Author(s):  
Tamer M. Wasfy ◽  
Hatem M. Wasfy

Abstract Belt-drives are used to transmit power between rotational machine elements in many mechanical systems such as industrial machines, home appliances, and internal combustion engines. The belt cross-section typically consists of axially stiff tension cords (made of steel or polyester strands) embedded in a rubber matrix. The rubber matrix provides the friction interface between the belt and the pulleys through which mechanical torque is transmitted. In this paper, the effect of the rubber’s Young’s modulus and Poisson’s ratio on the steady-state belt normal, tangential and axial stresses, average belt slip, and belt-drive energy efficiency is studied using a high-fidelity flexible multibody dynamics model of a flat belt-drive. The belt’s rubber matrix is modeled using three-dimensional brick elements and the belt’s cords are modeled using one dimensional truss elements. Friction between the belt and the pulleys is modeled using an asperity-based Coulomb friction model. The pulleys are modeled as rigid bodies with a cylindrical contact surface. The equations of motion are integrated using a time-accurate explicit solution procedure.


Author(s):  
Tamer Wasfy

A new technique for modeling rigid bodies undergoing spatial motion using an explicit time-integration finite element code is presented. The key elements of the technique are: (a) use of the total rotation matrix relative to the inertial frame to measure the rotation of the rigid bodies; (b) time-integration of the rotational equations of motion in a body fixed (material) frame, with the resulting incremental rotations added to the total rotation matrix; (c) penalty formulation for creating connection points (virtual nodes which do not add extra degrees of freedom) on the rigid-body where joints can be placed. The use of the rotation matrix along with incremental rotation updates circumvents the problem of singularities associated with other types of three and four parameter rotation measures. Benchmark rigid multibody dynamics problems are solved to demonstrate the accuracy of the present technique.


Author(s):  
Tamer Wasfy ◽  
Hatem Wasfy ◽  
Paramsothy Jayakumar ◽  
Srinivas Sanikommu

Abstract The objective of this study is to validate a high-fidelity finite element tire model on hard pavement. In this model, the tire rubber matrix is modeled using locking-free brick elements with embedded thin beam elements along the tire’s circumference, meridian, and diagonals for modeling the tire’s reinforcements (belt, ply and bead). The internal air pressure is applied as a distributed force on the inner surface of the brick elements. Frictional contact between the outer surface of the brick elements and the pavement is modeled using the penalty method along with an asperity based Coulomb friction model. In order to validate the tire model, a medium duty truck tire is modeled and the following response quantities are compared to experimental results: (1) normal load versus deflection at different tire pressures; (2) rolling resistance versus speed; (3) longitudinal force versus slip; (4) lateral force versus slip angle for different normal loads; and (5) self-aligning torque versus slip angle for different normal loads.


Author(s):  
Tamer M. Wasfy ◽  
Hatem M. Wasfy ◽  
Jeanne M. Peters

Multibody dynamics and the discrete element method (DEM) are integrated into one solver for predicting the dynamic response of ground vehicles which run on wheels and/or tracks on cohesive soft soils (such as mud and snow). Multibody dynamics techniques are used to model the various vehicle components and connect those components using various types of joints and contact surfaces. A penalty technique is used to impose joint and normal contact constraints. An asperity-based friction model is used to model joint and contact friction. A soft cohesive soil material model (that includes normal and tangential inter-particle force models) is presented that can account for soil compressibility, plasticity, fracture, friction, viscosity, cohesive strength and flow. A Cartesian Eulerian grid contact search algorithm is used to allow fast contact detection between particles. A recursive bounding box contact search algorithm is used to allow fast contact detection between the particles and polygonal contact surfaces. The governing equations of motion are solved along with joint/constraint equations using a time-accurate explicit solution procedure. Numerical simulations of a typical vehicle going over a slopped soft soil terrain are presented to demonstrate the integrated solver. The solver can be used in vehicle design optimization.


Sign in / Sign up

Export Citation Format

Share Document