scholarly journals Platelet-Rich Plasma Improves the Wound Healing Potential of Mesenchymal Stem Cells through Paracrine and Metabolism Alterations

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Barbara Hersant ◽  
Mounia Sid-Ahmed ◽  
Laura Braud ◽  
Maud Jourdan ◽  
Yasmine Baba-Amer ◽  
...  

Chronic and acute nonhealing wounds represent a major public health problem, and replacement of cutaneous lesions by the newly regenerated skin is challenging. Mesenchymal stem cells (MSC) and platelet-rich plasma (PRP) were separately tested in the attempt to regenerate the lost skin. However, these treatments often remained inefficient to achieve complete wound healing. Additional studies suggested that PRP could be used in combination with MSC to improve the cell therapy efficacy for tissue repair. However, systematic studies related to the effects of PRP on MSC properties and their ability to rebuild skin barrier are lacking. We evaluated in a mouse exhibiting 4 full-thickness wounds, the skin repair ability of a treatment combining human adipose-derived MSC and human PRP by comparison to treatment with saline solution, PRP alone, or MSC alone. Wound healing in these animals was measured at day 3, day 7, and day 10. In addition, we examined in vitro and in vivo whether PRP alters in MSC their proangiogenic properties, their survival, and their proliferation. We showed that PRP improved the efficacy of engrafted MSC to replace lost skin in mice by accelerating the wound healing processes and ameliorating the elasticity of the newly regenerated skin. In addition, we found that PRP treatment stimulated in vitro, in a dose-dependent manner, the proangiogenic potential of MSC through enhanced secretion of soluble factors like VEGF and SDF-1. Moreover, PRP treatment ameliorated the survival and activated the proliferation of in vitro cultured MSC and that these effects were accompanied by an alteration of the MSC energetic metabolism including oxygen consumption rate and mitochondrial ATP production. Similar observations were found in vivo following combined administration of PRP and MSC into mouse wounds. In conclusion, our study strengthens that the use of PRP in combination with MSC might be a safe alternative to aid wound healing.

2021 ◽  
Author(s):  
Wenya Wang ◽  
Xiao Li ◽  
Chaochu Cui ◽  
Dongling Liu ◽  
Guotian Yin ◽  
...  

Abstract BackgroundAngiogenesis is a key prerequisite for wound healing. The conditioned medium following culture of umbilical cord mesenchymal stem cells (UCMSCs) has a potential to promote angiogenesis, but the efficacy is very low. Autophagy is an important process in protein recycling and a contributor for cell exocrine, which maybe stimulate the release of cytokines from UCMSCs to the medium and enhance the pro-angiogenic efficacy of the conditioned medium.MethodsAutophagy in UCMSCs was induced by 100 nM, 1 µM and 10 µM rapamycin for 6-hour and then detected by LC-3 immunofluorescence staining. After induction, the cells were washed with PBS for 3 times and cultured in fresh medium without rapamycin for additional 24-hour. And then, the conditioned medium was collected for the following experiments. The angiogenic effects of different groups of conditioned medium were verified by in vitro and in vivo tube formation assays in the matrigel-coated plates and matrigel plaques injected in mouse inguinal areas. Finally, the expressions of angiogenic factors including VEGF, FGF-1, FGF-2, TGF-α, MMP-3, MMP-9, PDGF-α, PDGF-β, HIF-1α and Ang II in the autophagic and control UCMSCs were measured by q-PCR assay.ResultsRapamycin induced autophagy of UCMSCs in a dose dependent manner, but the conditioned medium in 100 nM rapamycin-induced group was with the best pro-angiogenic efficacy. Thus, this group of medium was viewed as the optimal conditioned medium. The in vivo tube formation assay showed that angiogenesis in matrigel plaques injected daily with the optimal conditioned medium was more obvious than that injected with the control conditioned medium. Further, the expressions of VEGF, FGF-2, PDGF-α, MMP-9 and HIF-1α were markedly increased in UCMSCs following treatment with 100 nM rapamycin.ConclusionAppropriate autophagy improves the pro-angiogenic efficacy of the conditioned medium, which might be utilized to optimize the applications of UCMSCs-derived conditioned medium in wound healing and tissue repair.Trial registrationNot applicable.


2016 ◽  
Vol 473 (4) ◽  
pp. 1111-1118 ◽  
Author(s):  
Nhu Thuy Trinh ◽  
Toshiharu Yamashita ◽  
Tran Cam Tu ◽  
Toshiki Kato ◽  
Kinuko Ohneda ◽  
...  

2018 ◽  
Vol 28 (1) ◽  
pp. 105-115 ◽  
Author(s):  
JiaYang Sun ◽  
YunFeng Zhang ◽  
XianJi Song ◽  
Jiajing Zhu ◽  
QingSan Zhu

Radioactive dermatitis is caused by the exposure of skin and mucous membranes to radiation fields. The pathogenesis of radioactive dermatitis is complex and difficult to cure. Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) may serve as a promising candidate for the therapy of cutaneous wounds. The aim of this study was to investigate whether a WJ-MSC-derived conditioned medium (MSC-CM) could be used to treat radiation-induced skin wounds in rats using a radiation-induced cutaneous injury model. The present study was designed to examine MSC-CM therapy in the recovery of radiation-induced skin wounds in vitro and in vivo. Firstly, we prepared the MSC-CM and tested the effects of the MSC-CM on human umbilical vein endothelial cell proliferation in vitro. After that, we used a β-ray beam to make skin wounds in rats and tested the effects of MSC-CM on cutaneous wound healing in vivo. Our results indicated that MSC-CM secreted factors that promoted HUVEC proliferation, regeneration of sebaceous glands, and angiogenesis. Importantly, MSC-CM promoted wound healing in excess of the positive control (epidermal growth factor), with no, or smaller, scar formation. In conclusion, MSC-CM significantly accelerated wound closure and enhanced the wound healing quality. MSC-CM has a beneficial therapeutic effect on radiation-induced cutaneous injury skin in rats and in this way MSC-CM may serve as a basis of a novel cell-free therapeutic approach for radiation dermatitis.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jianing Ding ◽  
Xin Wang ◽  
Bi Chen ◽  
Jieyuan Zhang ◽  
Jianguang Xu

The exosomes are derived from mesenchymal stem cells (MSCs) and may be potentially used as an alternative for cell therapy, for treating diabetic wounds, and aid in angiogenesis. This study, aimed to investigate whether exosomes originated from bone marrow-derived MSCs (BMSCs) preconditioned by deferoxamine (DFO-Exos) exhibited superior proangiogenic property in wound repair and to explore the underlying mechanisms involved. Human umbilical vein endothelial cells (HUVECs) were used for assays involving cell proliferation, scratch wound healing, and tube formation. To test the effects in vivo, streptozotocin-induced diabetic rats were established. Two weeks after the procedure, histological analysis was used to measure wound-healing effects, and the neovascularization was evaluated as well. Our findings demonstrated that DFO-Exos activate the PI3K/AKT signaling pathway via miR-126 mediated PTEN downregulation to stimulate angiogenesis in vitro. This contributed to enhanced wound healing and angiogenesis in streptozotocin-induced diabetic rats in vivo. Our results suggest that, in cell-free therapies, exosomes derived from DFO preconditioned stem cells manifest increased proangiogenic ability.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Tao Liu ◽  
Xinfeng Zheng ◽  
Chenglong Wang ◽  
Chuandong Wang ◽  
Shengdan Jiang ◽  
...  

AbstractN6-methyladenosine (m6A) is required for differentiation of human bone marrow mesenchymal stem cells (hBMSCs). However, its intrinsic mechanisms are largely unknown. To identify the possible role of m6A binding protein YTHDF1 in hBMSCs osteogenesis in vivo, we constructed Ythdf1 KO mice and showed that depletion of Ythdf1 would result in decreased bone mass in vivo. Both deletion of Ythdf1 in mouse BMSCs and shRNA-mediated knockdown of YTHDF1 in hBMSCs prevented osteogenic differentiation of cells in vitro. Using methylated RNA immunoprecipitation (Me-RIP) sequencing and RIP-sequencing, we found that ZNF839 (a zinc finger protein) served as a target of YTHDF1. We also verified its mouse homolog, Zfp839, was translationally regulated by Ythdf1 in an m6A-dependent manner. Zfp839 potentiated BMSC osteogenesis by interacting with and further enhancing the transcription activity of Runx2. These findings should improve our understanding of the mechanism of BMSC osteogenesis regulation and provide new ideas for the prevention and treatment of osteoporosis.


2021 ◽  
Author(s):  
Qian Wei ◽  
Yaxi Wang ◽  
Kui Ma ◽  
Xiaowei Bian ◽  
Qiankun Li ◽  
...  

Abstract Background: Endothelial dysfunction caused by persistent hyperglycemia in diabetes is responsible for impaired angiogenesis in diabetic wounds. Exosomes are considered potential therapeutic tools to promote diabetic wound healing. The aim of this study was to investigate the effects of exosomes secreted by human umbilical cord mesenchymal stem cells (hucMSC-Exos) on angiogenesis under high glucose (HG) conditions in vivo and in vitro and to explore the underlying mechanisms.Methods: HucMSC-Exos were used to treat diabetic wounds and human umbilical vascular endothelial cells (HUVECs) exposed to HG. Wound healing and angiogenesis were assessed in vivo. The biological characteristics of HUVECs were examined in vitro. Expression of pro-angiogenesis genes in HUVECs was also examined by western blotting. The miRNAs contained within hucMSC-Exos were identified using miRNA microarrays and qRT-PCR. The roles of selected miRNAs in angiogenesis were assessed using specific agomirs and inhibitors.Results: In vivo, local application of hucMSC-Exos enhanced wound healing and angiogenesis. In vitro, hucMSC-Exos reduced senescence of HG-treated HUVECs and promoted proliferation, migration, and tube formation by inhibiting phosphatase and tensin homolog (PTEN) expression and activating the AKT/HIF-1α/VEGF pathways. MiR-221-3p was enriched in hucMSC-Exos. In vitro, MiR-221-3p downregulated PTEN and activated the AKT/HIF-1α/VEGF pathway to promote proliferation, migration, and tube formation in HG-treated HUVECs. In vivo, miR-221-3p agomirs mimicked the effects of hucMSC-Exos on wound healing and angiogenesis, whereas miR-221-3p inhibitors reversed their effects.Conclusions: Our findings suggest that hucMSC-Exos have regenerative and protective effects on HG-induced senescence in endothelial cells via transfer of miR-221-3p, thereby accelerating diabetic wound healing. Thus, hucMSC-Exos may be promising therapeutic candidates for improving diabetic wound angiogenesis.


2017 ◽  
Vol 95 (5) ◽  
pp. 537-548 ◽  
Author(s):  
Hanan Hosni Ahmed ◽  
Laila Ahmed Rashed ◽  
Sohair Mahfouz ◽  
Rania Elsayed Hussein ◽  
Marwa Alkaffas ◽  
...  

Our aim was to study the effect of platelet-rich plasma (PRP) on the proliferation of bone-marrow-derived mesenchymal stem cells (BM-MSCs) and to investigate their roles in the healing of experimental burn injury and the possible mechanism of action. Our work was divided into in-vitro and in-vivo studies. The in-vitro study included untreated MSCs and MSCs treated with PRP. Levels of TGF-β and cell proliferation were assessed. In the in-vivo study, 72 rats were distributed equally among 6 groups: control, burn, burn with MSCs, burn with PRP, burn with both MSCs and PRP, and burn with MSCs pretreated with PRP. On the 7th and 20th day after injury, the serum levels of transforming growth factor beta (TGF-β) and tumor necrosis factor alpha (TNF-α), as well as interleukin-10 (IL-10) levels in skin tissue were measured by ELISA; histopathology and gene expression of MMP-1, TIMP-2, Ang-1, Ang-2, and vimentin by real-time PCR were performed in all groups. In vitro: proliferation of MSCs and TGF-β increased in the PRP-treated group compared with the control group. In vivo: Ang-1, Ang-2, and vimentin were upregulated, whereas MMP-1 and TIMP-2 were downregulated. TGF-β and IL-10 were increased, whereas TNF-α was decreased in all treated groups with more significance in MSCs and PRP on day 20. Histopathology of burn skin was improved in all treated groups, particularly in MSCs pretreated with PRP 20 days post-burn.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Sung-Chan Shin ◽  
Hyung-Sik Kim ◽  
Yoojin Seo ◽  
Cho Hee Kim ◽  
Ji Min Kim ◽  
...  

The therapeutic potential of tonsil-derived mesenchymal stem cells (TMSCs) has been proved in several in vitro and in vivo models based on their antioxidative capacity. Oxidative stress is involved in the formation of vocal fold scars and the aging of vocal folds. However, few studies have examined the direct correlation between oxidative damage and reconstitution of extracellular matrix (ECM) in the vocal fold fibrosis. We, therefore, sought to investigate the impact of oxidative stress on cell survival and ECM production of human vocal fibroblasts (hVFFs) and the protective effects elicited by TMSCs against oxidative damages in hVFFs. hVFFs were exposed to different concentrations of tert-butyl hydroperoxide in the presence or absence of TMSCs. Cell viability and reactive oxygen species (ROS) production were assessed to examine the progression of oxidative stress in vitro. In addition, expression patterns of ECM-associated factors including various collagens were examined by real-time PCR and immunocytochemical analysis. We found that both cell viability and proliferation capacity of hVFFs were decreased following the exposure to tBHP in a dose-dependent manner. Furthermore, tBHP treatment induced the generation of ROS and reactive aldehydes, while it decreased endogenous activity of antioxidant enzymes in hVFF. Importantly, TMSCs could rescue these oxidative stress-associated damages of hVFFs. TMSCs also downregulated tBHP-mediated production of proinflammatory cytokines in hVFFs. In addition, coculture with TMSC could restore the endogenous matrix metalloproteinase (MMP) activity of hVFFs upon tBHP treatment and, in turn, reduce the oxidative stress-induced ECM accumulation in hVFFs. We have, therefore, shown that the changes in hVFF proliferative capacity and ECM gene expression induced by oxidative stress are consistent with in vivo phenotypes observed in aging vocal folds and vocal fold scarring and that TMSCs may function to reduce oxidative stress in aging vocal folds.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Elizabeth A. Wahl ◽  
Fernando A. Fierro ◽  
Thomas R. Peavy ◽  
Ursula Hopfner ◽  
Julian F. Dye ◽  
...  

Mesenchymal stem cells (MSCs) have been shown to improve tissue regeneration in several preclinical and clinical trials. These cells have been used in combination with three-dimensional scaffolds as a promising approach in the field of regenerative medicine. We compare the behavior of human adipose-derived MSCs (AdMSCs) on four different biomaterials that are awaiting or have already received FDA approval to determine a suitable regenerative scaffold for delivering these cells to dermal wounds and increasing healing potential. AdMSCs were isolated, characterized, and seeded onto scaffolds based on chitosan, fibrin, bovine collagen, and decellularized porcine dermis.In vitroresults demonstrated that the scaffolds strongly influence key parameters, such as seeding efficiency, cellular distribution, attachment, survival, metabolic activity, and paracrine release. Chick chorioallantoic membrane assays revealed that the scaffold composition similarly influences the angiogenic potential of AdMSCsin vivo. The wound healing potential of scaffolds increases by means of a synergistic relationship between AdMSCs and biomaterial resulting in the release of proangiogenic and cytokine factors, which is currently lacking when a scaffold alone is utilized. Furthermore, the methods used herein can be utilized to test other scaffold materials to increase their wound healing potential with AdMSCs.


Sign in / Sign up

Export Citation Format

Share Document