scholarly journals A Nondisturbing Service to Automatically Customize Notification Sending Using Implicit-Feedback

2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Fernando López Hernández ◽  
Elena Verdú Pérez ◽  
J. Javier Rainer Granados ◽  
Rubén González Crespo

This paper addresses the problem of automatically customizing the sending of notifications in a nondisturbing way, that is, by using only implicit-feedback. Then, we build a hybrid filter that combines text mining content filtering and collaborative filtering to predict the notifications that are most interesting for each user. The content-based filter clusters notifications to find content with topics for which the user has shown interest. The collaborative filter increases diversity by discovering new topics of interest for the user, because these are of interest to other users with similar concerns. The paper reports the result of measuring the performance of this recommender and includes a validation of the topics-based approach used for content selection. Finally, we demonstrate how the recommender uses implicit-feedback to personalize the content to be delivered to each user.

2021 ◽  
Vol 11 (24) ◽  
pp. 12119
Author(s):  
Ninghua Sun ◽  
Tao Chen ◽  
Wenshan Guo ◽  
Longya Ran

The problems with the information overload of e-government websites have been a big obstacle for users to make decisions. One promising approach to solve this problem is to deploy an intelligent recommendation system on e-government platforms. Collaborative filtering (CF) has shown its superiority by characterizing both items and users by the latent features inferred from the user–item interaction matrix. A fundamental challenge is to enhance the expression of the user or/and item embedding latent features from the implicit feedback. This problem negatively affected the performance of the recommendation system in e-government. In this paper, we firstly propose to learn positive items’ latent features by leveraging both the negative item information and the original embedding features. We present the negative items mixed collaborative filtering (NMCF) method to enhance the CF-based recommender system. Such mixing information is beneficial for extending the expressiveness of the latent features. Comprehensive experimentation on a real-world e-government dataset showed that our approach improved the performance significantly compared with the state-of-the-art baseline algorithms.


2018 ◽  
Vol 10 (12) ◽  
pp. 117 ◽  
Author(s):  
Bo Wang ◽  
Feiyue Ye ◽  
Jialu Xu

A recommendation system can recommend items of interest to users. However, due to the scarcity of user rating data and the similarity of single ratings, the accuracy of traditional collaborative filtering algorithms (CF) is limited. Compared with user rating data, the user’s behavior log is easier to obtain and contains a large amount of implicit feedback information, such as the purchase behavior, comparison behavior, and sequences of items (item-sequences). In this paper, we proposed a personalized recommendation algorithm based on a user’s implicit feedback (BUIF). BUIF considers not only the user’s purchase behavior but also the user’s comparison behavior and item-sequences. We extracted the purchase behavior, comparison behavior, and item-sequences from the user’s behavior log; calculated the user’s similarity by purchase behavior and comparison behavior; and extended word-embedding to item-embedding to obtain the item’s similarity. Based on the above method, we built a secondary reordering model to generate the recommendation results for users. The results of the experiment on the JData dataset show that our algorithm shows better improvement in regard to recommendation accuracy over other CF algorithms.


Author(s):  
Wolfgang Woerndl ◽  
Korbinian Moegele ◽  
Vivian Prinz

This chapter presents an approach to extend a real world mobile tourist guide running on personal digital assistants (PDAs) with collaborative filtering. The system builds a model of item similarities based on explicit and implicit ratings. This model is then utilized to generate recommendations in several ways. The approach integrates the current user location as context. Experiences gained in two field studies are reported. In the first one, 30 participants – real tourists visiting Prague – used the recommender function and were asked to fill out a questionnaire with promising results. In a second field study analyzing usage log files, an improvement of recommendations based on the collaborative filter in comparison to the pure location-based filter used before was discovered. In addition, recommendations based on implicit ratings derived from audio playback duration outperformed the model based on explicit ratings.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Imen Gmach ◽  
Nadia Abaoub ◽  
Rubina Khan ◽  
Naoufel Mahfoudh ◽  
Amira Kaddour

PurposeIn this article the authors will focus on the state of the art on information filtering and recommender systems based on trust. Then the authors will represent a variety of filtering and recommendation techniques studied in different literature, like basic content filtering, collaborative filtering and hybrid filtering. The authors will also examine different trust-based recommendation algorithms. It will ends with a summary of the different existing approaches and it develops the link between trust, sustainability and recommender systems.Design/methodology/approachMethodology of this study will begin with a general introduction to the different approaches of recommendation systems; then define trust and its relationship with recommender systems. At the end the authors will present their approach to “trust-based recommendation systems”.FindingsThe purpose of this study is to understand how groups of users could improve trust in a recommendation system. The authors will examine how to evaluate the performance of recommender systems to ensure their ability to meet the needs that led to its creation and to make the system sustainable with respect to the information. The authors know very well that selecting a measure must depend on the type of data to be processed and user interests. Since the recommendation domain is derived from information search paradigms, it is obvious to use the evaluation measures of information systems.Originality/valueThe authors presented a list of recommendations systems. They examined and compared several recommendation approaches. The authors then analyzed the dominance of collaborative filtering in the field and the emergence of Recommender Systems in social web. Then the authors presented and analyzed different trust algorithms. Finally, their proposal was to measure the impact of trust in recommendation systems.


2020 ◽  
Vol 309 ◽  
pp. 03009
Author(s):  
Yingjie Jin ◽  
Chunyan Han

The collaborative filtering recommendation algorithm is a technique for predicting items that a user may be interested in based on user history preferences. In the recommendation process of music data, it is often difficult to score music and the display score data for music is less, resulting in data sparseness. Meanwhile, implicit feedback data is more widely distributed than display score data, and relatively easy to collect, but implicit feedback data training efficiency is relatively low, usually lacking negative feedback. In order to effectively solve the above problems, we propose a music recommendation algorithm combining clustering and latent factor models. First, the user-music play record data is processed to generate a user-music matrix. The data is then analyzed using a latent factor probability model on the resulting matrix to obtain a user preference matrix U and a musical feature matrix V. On this basis, we use two K- means algorithms to perform user clustering and music clustering on two matrices. Finally, for the user preference matrix and the commodity feature matrix that complete the clustering, a user-based collaborative filtering algorithm is used for prediction. The experimental results show that the algorithm can reduce the running cost of large-scale data and improve the recommendation effect.


Sign in / Sign up

Export Citation Format

Share Document