scholarly journals Vibration-Based Damage Assessment in Gravity-Based Wind Turbine Tower under Various Waves

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Cong-Uy Nguyen ◽  
So-Young Lee ◽  
Heon-Tae Kim ◽  
Jeong-Tae Kim

In this study, the feasibility of vibration-based damage assessment in a wind turbine tower (WTT) with gravity-based foundation (GBF) under various waves is numerically investigated. Firstly, a finite element model is constructed for the GBF WTT which consists of a tower, caisson, and foundation bed. Eigenvalue analysis is performed to identify a few vibration modes of interest, which represent complex behaviors of a flexible tower, rigid caisson, and deformable foundation. Secondly, wave-induced dynamic pressures are analyzed for a few selected wave conditions and damage scenarios are also designed to simulate the main components of the target GBF WTT. Thirdly, forced vibration responses of the GBF WTT are analyzed for the wave-induced excitation. Then modal parameters (i.e., natural frequencies and mode shapes) are extracted by using a combined use of time-domain and frequency-domain modal identification methods. Finally, the variation of modal parameters is estimated by measuring relative changes in natural frequencies and mode shapes in order to quantify the damage-induced effects. Also, the wave-induced variation of modal parameters is estimated to relatively assess the effect of various wave actions on the damage-induced variation of modal parameters.

2016 ◽  
Vol 16 (09) ◽  
pp. 1550059 ◽  
Author(s):  
Ladislao R. Ticona Melo ◽  
Ramon S. Y. R. C. Silva ◽  
Tulio N. Bittencourt ◽  
Luciano M. Bezerra

Obtaining the dynamic parameters of a bridge is essential to validation of the model used in the dynamic analysis of the bridge. In order to implement methodologies for damage detection, many experimental modal identification tests are performed for estimating the modal parameters of structures, including the natural frequencies and mode shapes. This paper presents an experimental and numerical study for finding the modal parameters of an aluminum model built to scale of a real railway bridge. Although, so far no test has been performed on the real railway bridge for comparison with the scale model, this paper seeks to apply the scale model experimental and numerical techniques for obtaining the dynamic parameters of the bridge. The software SAP2000 was used for the numerical analyses and for the experimental aspect, the circle fit and the stochastic subspace identification methods are used. Numerical and experimental results showed good correlation.


2005 ◽  
Vol 293-294 ◽  
pp. 599-606 ◽  
Author(s):  
R.A. Votsis ◽  
M.M. Abdel Wahab ◽  
M.K. Chryssanthopoulos

Simulations of damage scenarios were carried out using a finite element model of a newly constructed FRP composite footbridge, the Wilcott footbridge. This footbridge represents a new generation of suspension footbridges that have lightweight decks made of pultruded glass fibre reinforced polymer (GFRP) composite elements. It offers several advantages over conventional steel or concrete footbridges, e.g. speed of installation, high resistance to corrosion and saving in weight and foundations. On the other hand, its lightness and slenderness make it more sensitive to dynamic effects, both at serviceability and ultimate limit states. A finite element model using 3-D beam elements was constructed and damage scenarios were simulated and introduced in the model. The natural frequencies, mode shapes as well as time responses due to pedestrian loading were predicted. Different size of delamination in the composite deck was simulated at various locations along the bridge. The sensitivity of natural frequencies and mode shapes due to delamination were assessed by comparing the results of the damaged deck to those of the reference intact deck. The effect of changes in the cables’ initial strains on the modal parameters was also examined, and the sensitivity of modal parameters to cable degradation was assessed.


2021 ◽  
pp. 0309524X2110116
Author(s):  
Oumnia Lagdani ◽  
Mostapha Tarfaoui ◽  
Mourad Nachtane ◽  
Mourad Trihi ◽  
Houda Laaouidi

In the far north, low temperatures and atmospheric icing are a major danger for the safe operation of wind turbines. It can cause several problems in fatigue loads, the balance of the rotor and aerodynamics. With the aim of improving the rigidity of the wind turbine blade, composite materials are currently being used. A numerical work aims to evaluate the effect of ice on composite blades and to determine the most adequate material under icing conditions. Different ice thicknesses are considered in the lower part of the blade. In this paper, modal analysis is performed to obtain the natural frequencies and corresponding mode shapes of the structure. This analysis is elaborated using the finite element method (FEM) computer program through ABAQUS software. The results have laid that the natural frequencies of the blade varied according to the material and thickness of ice and that there is no resonance phenomenon.


Author(s):  
Mohan D. Rao ◽  
Krishna M. Gorrepati

Abstract This paper presents the analysis of modal parameters (natural frequencies, damping ratios and mode shapes) of a simply supported beam with adhesively bonded double-strap joint by the finite-element based Modal Strain Energy (MSE) method using ANSYS 4.4A software. The results obtained by the MSE method are compared with closed form analytical solutions previously obtained by the first author for flexural vibration of the same system. Good agreement has been obtained between the two methods for both the natural frequencies and system loss factors. The effects of structural parameters and material properties of the adhesive on the modal properties of the joint system are also studied which are useful in the design of the joint system for passive vibration and noise control. In order to evaluate the MSE and analytical results, some experiments were conducted using aluminum double-strap joint with 3M ISD112 damping material. The experimental results agreed well with both analytical and MSE results indicating the validity of both analytical and MSE methods. Finally, a comparative study has been conducted using various commercially available damping materials to evaluate their relative merits for use in the design of these joints.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Wenyun Wang ◽  
Xuejun Li ◽  
Anhua Chen

The identification of operational modal parameters of a wind turbine blade is fundamental for online damage detection. In this paper, we use binocular photogrammetry technology instead of traditional contact sensors to measure the vibration of blade and apply the advanced stochastic system identification technique to identify the blade modal frequencies automatically when only output data are available. Image feature extraction and target point tracking (PT) are carried out to acquire the displacement of labeled targets on the wind turbine blade. The vibration responses of the target points are obtained. The data-driven stochastic subspace identification (SSI-Data) method based on the Kalman filter prediction sequence is explored to extract modal parameters from vibration response under unknown excitation. Hankel matrixes are reconstructed with different dimensions, so different modal parameters are produced. Similarity of these modal parameters is compared and used to cluster modes into groups. Under appropriate tolerance thresholds, spurious modes can be eliminated. Experiment results show that good effects and stable accuracy can also be achieved with the presented photogrammetry vibration measurement and automatic modal identification algorithm.


2019 ◽  
Vol 44 (1) ◽  
pp. 49-59
Author(s):  
Nilesh Chandgude ◽  
Nitin Gadhave ◽  
Ganesh Taware ◽  
Nitin Patil

In this article, three small wind turbine blades of different materials were manufactured. Finite element analysis was carried out using finite element software ANSYS 14.5 on modeled blades of National Advisory Committee for Aeronautics 4412 airfoil profile. From finite element analysis, first, two flap-wise natural frequencies and mode shapes of three different blades are obtained. Experimental vibration analysis of manufactured blades was carried out using fast Fourier transform analyzer to find the first two flap-wise natural frequencies. Finally, the results obtained from the finite element analysis and experimental test of three blades are compared. Based on vibration analysis, we found that the natural frequency of glass fiber reinforced plastic blade reinforced with aluminum sheet metal (small) strips increases compared with the remaining blades. An increase in the natural frequency indicates an increase in the stiffness of blade.


2018 ◽  
Vol 7 (4.38) ◽  
pp. 1395 ◽  
Author(s):  
Kadhim H. Suffer ◽  
Yassr Y. Kahtan ◽  
Zuradzman M. Razlan

The present global energy economy suggests the use of renewable sources such as solar, wind, and biomass to produce the required power. The vertical axis wind turbine is one of wind power applications. Usually, when the vertical axis wind turbine blades are designed from the airfoil, the starting torque problem begins. The main objective of this research is to numerically simulate the combination of movable vanes of a flat plate with the airfoil in a single blade configuration to solve the starting torque problem. CFD analysis in ANSYS-FLUENT and structural analysis in ANSYS of combined blade vertical axis wind turbine rotor has been undertaken. The first simulation is carried out to investigations the aerodynamic characteristic of the turbine by using the finite volume method. While the second simulation is carried out with finite element method for the modal analysis to find the natural frequencies and the mode shape in order to avoid extreme vibration and turbine failure, the natural frequencies, and their corresponding mode shapes are studied and the results were presented with damping and without damping for four selected cases. The predicted results show that the static pressure drop across the blade increase in the active blade side because of the vanes are fully closed and decrease in the negative side because of the all the vanes are fully open. The combined blade helps to increase turbine rotation and so, thus, the power of the turbine increases. While the modal results show that until the 5th natural frequency the effect of damping can be neglected. The predicted results show agreement with those reported in the literature for VAWT with different blade designs.   


Author(s):  
Alok Sinha ◽  
Benjamin Hall ◽  
Brice Cassenti ◽  
Gary Hilbert

This paper deals with the development of a procedure to model geometric variations of blades. Specifically, vibratory parameters of blades are extracted from CMM data on an integrally bladed rotor (IBR). The method is based on proper orthogonal decomposition (POD) of CMM data, solid modeling and finite element techniques. In addition to obtaining natural frequencies and mode shapes of each blade on an IBR, statistics of these modal parameters are also computed and characterized. Numerical results are validated by comparison with experimental results.


2010 ◽  
Vol 163-167 ◽  
pp. 2598-2602
Author(s):  
Nadia Hajihasani ◽  
Norhisham Bakhary

This paper presents a study in the effect of spalling to dynamic parameters such as natural frequencies and mode shapes. Numerical example of a slab is used as an example in this study. The slab will be modelled using ANSYS 11.0 and various types of spalling are imposed. The changes of vibration parameters are monitored and compared. To compare the sensitivity of modal parameters to spalling is determined using the flexibility method. Based on the results it is found that by incorporating mode shapes using flexibility method, damage location and severity can be obtained.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401770764 ◽  
Author(s):  
Wei-Chih Su ◽  
Chiung-Shiann Huang ◽  
Ho-Cheng Lien ◽  
Quang-Tuyen Le

This article presents a procedure to improve the accuracy of calculated stiffness matrix of a structure based on the identified modal parameters from its measured responses. First, a continuous wavelet transform is applied to the measured responses of a structure, and the state–space model can be reconstructed by the wavelet coefficients of acceleration that can be obtained from the measured noisy responses. The modal parameters are identified using the subspace approach. Second, the identified mode shapes are corrected via Gram–Schmidt process. Finally, the identified natural frequencies and the corrected mode shapes in previous steps are utilized to build the stiffness matrix of structure. The accuracy of the proposed approach is numerically confirmed, and the noise effects on the ability to precisely identify the stiffness matrix are also investigated. The measured data of two eight-story steel frames in a shaking table test are analyzed to demonstrate the applicability of the procedure to real structures.


Sign in / Sign up

Export Citation Format

Share Document