scholarly journals Computational Fluid Dynamics Characterization of Two Patient-Specific Systemic-to-Pulmonary Shunts before and after Operation

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Neichuan Zhang ◽  
Haiyun Yuan ◽  
Xiangyu Chen ◽  
Jiawei Liu ◽  
Qifei Jian ◽  
...  

Studying the haemodynamics of the central shunt (CS) and modified Blalock–Taussig shunt (MBTS) benefits the improvement of postoperative recovery for patients with an aorta-pulmonary shunt. Shunt configurations, including CS and MBTS, are virtually reconstructed for infants A and B based on preoperative CT data, and three-dimensional models of A, 11 months after CS, and B, 8 months after MBTS, are reconstructed based on postoperative CT data. A series of parameters including energy loss, wall shear stress, and shunt ratio are computed from simulation to analyse the haemodynamics of CS and MBTS. Our results showed that the shunt ratio of the CS is approximately 30% higher than the MBTS and velocity distribution in the left pulmonary artery (LPA) and right pulmonary artery (RPA) was closer to a natural development in the CS than the MBTS. However, energy loss of the MBTS is lower, and the MBTS can provide more symmetric pulmonary artery (PA) flow than the CS. With the growth of infants A and B, the shunt ratio of infants was decreased, but maximum wall shear stress and the distribution region of high wall shear stress (WSS) were increased, which raises the probability of thrombosis. For infant A, the preoperative abnormal PA structure directly resulted in asymmetric growth of PA after operation, and the LPA/RPA ratio decreased from 0.49 to 0.25. Insufficient reserved length of the MBTS led to traction phenomena with the growth of infant B; on the one hand, it increased the eddy current, and on the other hand, it increased the flow resistance of anastomosis, promoting asymmetric PA flow.

2015 ◽  
Vol 8 (4) ◽  
pp. 407-412 ◽  
Author(s):  
Daniel M Sforza ◽  
Kenichi Kono ◽  
Satoshi Tateshima ◽  
Fernando Viñuela ◽  
Christopher Putman ◽  
...  

ObjectiveThe detailed mechanisms of cerebral aneurysm evolution are poorly understood but are important for objective aneurysm evaluation and improved patient management. The purpose of this study was to identify hemodynamic conditions that may predispose aneurysms to growth.MethodsA total of 33 intracranial unruptured aneurysms longitudinally followed with three-dimensional imaging were studied. Patient-specific computational fluid dynamics models were constructed and used to quantitatively characterize the hemodynamic environments of these aneurysms. Hemodynamic characteristics of growing (n=16) and stable (n=17) aneurysms were compared. Logistic regression statistical models were constructed to test the predictability of aneurysm growth by hemodynamic features.ResultsGrowing aneurysms had significantly smaller shear rate ratios (p=0.01), higher concentration of wall shear stress (p=0.03), smaller vorticity ratios (p=0.01), and smaller viscous dissipation ratios (p=0.01) than stable aneurysms. They also tended to have larger areas under low wall shear stress (p=0.06) and larger aspect ratios (p=0.18), but these trends were not significant. Mean wall shear stress was not significantly different between growing and stable aneurysms. Logistic regression models based on hemodynamic variables were able to discriminate between growing and stable aneurysms with a high degree of accuracy (94–100%).ConclusionsGrowing aneurysms tend to have complex intrasaccular flow patterns that induce non-uniform wall shear stress distributions with areas of concentrated high wall shear stress and large areas of low wall shear stress. Statistical models based on hemodynamic features seem capable of discriminating between growing and stable aneurysms.


Author(s):  
Nicolas A. Buchmann ◽  
Mark C. Jermy

This work presents Particle Image Velocimetry (PIV) measurements in idealised and patient specific human carotid artery bifurcations (CAB) under steady and pulsatile flow. The geometry and corresponding boundary conditions were obtained by Magnetic Resonance Imaging (MRI) and replicated in an in-vitro model. A complex three-dimensional flow structure exists inside the CAB and vorticity and wall shear stress data are used to quantify the differences between the idealised and patient specific geometry.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mikołaj Zimny ◽  
Edyta Kawlewska ◽  
Anna Hebda ◽  
Wojciech Wolański ◽  
Piotr Ładziński ◽  
...  

Abstract Background Previously published computational fluid dynamics (CFD) studies regarding intracranial aneurysm (IA) formation present conflicting results. Our study analysed the involvement of the combination of high wall shear stress (WSS) and a positive WSS gradient (WSSG) in IA formation. Methods We designed a case-control study with a selection of 38 patients with an unruptured middle cerebral artery (MCA) aneurysm and 39 non-aneurysmal controls to determine the involvement of WSS, oscillatory shear index (OSI), the WSSG and its absolute value (absWSSG) in aneurysm formation based on patient-specific CFD simulations using velocity profiles obtained from transcranial colour-coded sonography. Results Among the analysed parameters, only the WSSG had significantly higher values compared to the controls (11.05 vs − 14.76 [Pa/mm], P = 0.020). The WSS, absWSSG and OSI values were not significantly different between the analysed groups. Logistic regression analysis identified WSS and WSSG as significant co-predictors for MCA aneurysm formation, but only the WSSG turned out to be a significant independent prognosticator (OR: 1.009; 95% CI: 1.001–1.017; P = 0.025). Significantly more patients (23/38) in the case group had haemodynamic regions of high WSS combined with a positive WSSG near the bifurcation apex, while in the control group, high WSS was usually accompanied by a negative WSSG (14/39). From the analysis of the ROC curve for WSSG, the area under the curve (AUC) was 0.654, with the optimal cut-off value −0.37 Pa/mm. The largest AUC was recognised for combined WSS and WSSG (AUC = 0.671). Our data confirmed that aneurysms tend to form near the bifurcation apices in regions of high WSS values accompanied by positive WSSG. Conclusions The development of IAs is determined by an independent effect of haemodynamic factors. High WSS impacts MCA aneurysm formation, while a positive WSSG mainly promotes this process.


Circulation ◽  
2014 ◽  
Vol 129 (6) ◽  
pp. 673-682 ◽  
Author(s):  
Riti Mahadevia ◽  
Alex J. Barker ◽  
Susanne Schnell ◽  
Pegah Entezari ◽  
Preeti Kansal ◽  
...  

2019 ◽  
Vol 11 (10) ◽  
pp. 999-1003 ◽  
Author(s):  
Michael R Levitt ◽  
Christian Mandrycky ◽  
Ashley Abel ◽  
Cory M Kelly ◽  
Samuel Levy ◽  
...  

ObjectivesTo study the correlation between wall shear stress and endothelial cell expression in a patient-specific, three-dimensional (3D)-printed model of a cerebral aneurysm.Materials and methodsA 3D-printed model of a cerebral aneurysm was created from a patient’s angiogram. After populating the model with human endothelial cells, it was exposed to media under flow for 24 hours. Endothelial cell morphology was characterized in five regions of the 3D-printed model using confocal microscopy. Endothelial cells were then harvested from distinct regions of the 3D-printed model for mRNA collection and gene analysis via quantitative polymerase chain reaction (qPCR.) Cell morphology and mRNA measurement were correlated with computational fluid dynamics simulations.ResultsThe model was successfully populated with endothelial cells, which survived under flow for 24 hours. Endothelial morphology showed alignment with flow in the proximal and distal parent vessel and aneurysm neck, but disorganization in the aneurysm dome. Genetic analysis of endothelial mRNA expression in the aneurysm dome and distal parent vessel was compared with the proximal parent vessels. ADAMTS-1 and NOS3 were downregulated in the aneurysm dome, while GJA4 was upregulated in the distal parent vessel. Disorganized morphology and decreased ADAMTS-1 and NOS3 expression correlated with areas of substantially lower wall shear stress and wall shear stress gradient in computational fluid dynamics simulations.ConclusionsCreating 3D-printed models of patient-specific cerebral aneurysms populated with human endothelial cells is feasible. Analysis of these cells after exposure to flow demonstrates differences in both cell morphology and genetic expression, which correlate with areas of differential hemodynamic stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Wang ◽  
Junwei Wang ◽  
Jing Peng ◽  
Mingming Huo ◽  
Zhiqiang Yang ◽  
...  

Patients with heart failure (HF) or undergoing cardiogenic shock and percutaneous coronary intervention require short-term cardiac support. Short-term cardiac support using a left ventricular assist device (LVAD) alters the pressure and flows of the vasculature by enhancing perfusion and improving the hemodynamic performance for the HF patients. However, due to the position of the inflow and outflow of the LVAD, the local hemodynamics within the aorta is altered with the LVAD support. Specifically, blood velocity, wall shear stress, and pressure difference are altered within the aorta. In this study, computational fluid dynamics (CFD) was used to elucidate the effects of a short-term LVAD for hemodynamic performance in a patient-specific aorta model. The three-dimensional (3D) geometric models of a patient-specific aorta and a short-term LVAD, Impella CP, were created. Velocity, wall shear stress, and pressure difference in the patient-specific aorta model with the Impella CP assistance were calculated and compared with the baseline values of the aorta without Impella CP support. Impella CP support augmented cardiac output, blood velocity, wall shear stress, and pressure difference in the aorta. The proposed CFD study could analyze the quantitative changes in the important hemodynamic parameters while considering the effects of Impella CP, and provide a scientific basis for further predicting and assessing the effects of these hemodynamic signals on the aorta.


PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0217271 ◽  
Author(s):  
A. M. Moerman ◽  
K. Dilba ◽  
S. Korteland ◽  
D. H. J. Poot ◽  
S. Klein ◽  
...  

2015 ◽  
Vol 8 (8) ◽  
pp. 808-812 ◽  
Author(s):  
Ying Zhang ◽  
Linkai Jing ◽  
Jian Liu ◽  
Chuanhui Li ◽  
Jixing Fan ◽  
...  

ObjectiveTo identify clinical, morphological, and hemodynamic independent characteristic factors that discriminate posterior communicating artery (PCoA) aneurysm rupture status.Methods173 patients with single PCoA aneurysms (108 ruptured, 65 unruptured) between January 2012 and June 2014 were retrospectively collected. Patient-specific models based on their three-dimensional digital subtraction angiography images were constructed and analyzed by a computational fluid dynamic method. All variables were analyzed by univariate analysis and multivariate logistic regression analysis.ResultsTwo clinical factors (younger age and atherosclerosis), three morphological factors (higher aspect ratio, bifurcation type, and irregular shape), and six hemodynamic factors (lower mean and minimum wall shear stress, higher oscillatory shear index, a greater portion of area under low wall shear stress, unstable and complex flow pattern) were significantly associated with PCoA aneurysm rupture. Independent factors characterizing the rupture status were identified as age (OR 0.956, p=0.015), irregular shape (OR 6.709, p<0.001), and minimum wall shear stress (OR 0.001, p=0.038).ConclusionsWe combined clinical, morphological, and hemodynamic characteristics analysis and found the three strongest independent factors for PCoA aneurysm rupture were younger age, irregular shape, and low minimum wall shear stress. This may be useful for guiding risk assessments and subsequent treatment decisions for PCoA aneurysms.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Matthew D. Ford ◽  
Ugo Piomelli

Cerebral aneurysms are a common cause of death and disability. Of all the cardiovascular diseases, aneurysms are perhaps the most strongly linked with the local fluid mechanic environment. Aside from early in vivo clinical work that hinted at the possibility of high-frequency intra-aneurysmal velocity oscillations, flow in cerebral aneurysms is most often assumed to be laminar. This work investigates, through the use of numerical simulations, the potential for disturbed flow to exist in the terminal aneurysm of the basilar bifurcation. The nature of the disturbed flow is explored using a series of four idealized basilar tip models, and the results supported by four patient specific terminal basilar tip aneurysms. All four idealized models demonstrated instability in the inflow jet through high frequency fluctuations in the velocity and the pressure at approximately 120 Hz. The instability arises through a breakdown of the inflow jet, which begins to oscillate upon entering the aneurysm. The wall shear stress undergoes similar high-frequency oscillations in both magnitude and direction. The neck and dome regions of the aneurysm present 180 deg changes in the direction of the wall shear stress, due to the formation of small recirculation zones near the shear layer of the jet (at the frequency of the inflow jet oscillation) and the oscillation of the impingement zone on the dome of the aneurysm, respectively. Similar results were observed in the patient-specific models, which showed high frequency fluctuations at approximately 112 Hz in two of the four models and oscillations in the magnitude and direction of the wall shear stress. These results demonstrate that there is potential for disturbed laminar unsteady flow in the terminal aneurysm of the basilar bifurcation. The instabilities appear similar to the first instability mode of a free round jet.


Sign in / Sign up

Export Citation Format

Share Document