scholarly journals Kinematic and Dynamic Characteristics of the Free-Floating Space Manipulator with Free-Swinging Joint Failure

2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
Qingxuan Jia ◽  
Bonan Yuan ◽  
Gang Chen ◽  
Yingzhuo Fu

For the free-floating space manipulator with free-swinging joint failure, motions among its active joints, passive joints, free-floating base, and end-effector are coupled. It is significant to make clear all motion coupling relationships, which are defined as “kinematic coupling relationships” and “dynamic coupling relationships,” inside the system. With the help of conservation of system momentum, the kinematic model is established, and velocity mapping relation between active joints and passive joints, velocity mapping relation between active joints and base, velocity mapping relation between active joints and end-effector. We establish the dynamic model based on the Lagrange equation, and the system inertia matrix is partitioned according to the distribution of active joints, passive joints, and the base. Then, kinematic and dynamic coupling relationships are explicitly derived, and coupling indexes are defined to depict coupling degree. Motions of a space manipulator with free-swinging joint failure simultaneously satisfy the first-order nonholonomic constraint (kinematic coupling relationships) and the second-order nonholonomic constraint (dynamic coupling relationships), and the manipulator can perform tasks through motion planning and control. Finally, simulation experiments are carried out to verify the existence and correctness of the first-order and second-order nonholonomic constraints and display task execution effects of the space manipulator. This research analyzes the kinematic and dynamic characteristics of the free-floating space manipulator with free-swinging joint failure for the first time. It is the theoretical basis of free-swinging joint failure treatment for a space manipulator.

2019 ◽  
Vol 11 (3) ◽  
Author(s):  
Xi Kang ◽  
Jian S. Dai

The parallel mechanism with a reconfigurable platform retains all advantages of parallel mechanisms and provides additional functions by virtue of the reconfigurable platform, leading to kinematic coupling between limbs that restricts development of the mechanism. This paper aims at dealing with kinematic coupling between limbs by investigating the transferability of limb constraints and their degrees of relevance to the platform constraints based on the geometric model of the mechanism. The paper applies screw-system theory to verifying the degree of relevance between limb constraint wrenches and platform constraint wrenches, and reveals the transferability of limb constraints, to obtain the final resultant wrenches and twists of the end effector. The proposed method is extended to parallel mechanisms with planar n-bar reconfigurable platforms, spherical n-bar reconfigurable platforms, and other spatial reconfigurable platforms and lends itself to a way of studying a parallel mechanism with a reconfigurable platform.


2011 ◽  
Vol 308-310 ◽  
pp. 2095-2103
Author(s):  
Fei Feng ◽  
Yi Wei Liu ◽  
Hong Liu ◽  
He Gao Cai

The space manipulator which is mounted on a space structure or spacecraft to manipulate space payloads is important for the on-orbit-servicing. Its manipulation tasks depend on its end-effector. The flexibility of the large space manipulator will result in residual vibration on its tip, and let the manipulator have poor capability of end positioning. To overcome the drawbacks mentioned-above, the end-effector needs strong capability of misalignment tolerance and soft capturing. On the base of these requirements and analysis, two kinds of end-effector schemes are presented and designed in detail. The essential performances are in comparison based on the results of dynamic simulations and experiments. Consequently, the conclusion is drawn that the steel cable-snared end-effector which captures the interface by winding the grapple fixture probe, is the best scheme that can combine the ability of soft capturing and great misalignment tolerance perfectly.


1991 ◽  
Vol 113 (1) ◽  
pp. 11-18 ◽  
Author(s):  
C. P. Jayaraman ◽  
J. A. Kirk ◽  
D. K. Anand ◽  
M. Anjanappa

This paper deals with the dynamic analysis of the magnetic bearing stack system. The stack consists of a single flywheel supported by two magnetic bearings. To model the system, the dynamic equations of a magnetically suspended flywheel are derived. Next, the four control systems controlling the four degrees-of-freedom of the stack are incorporated into the model. The resulting dynamic equations are represented as first-order differential equations in a matrix form. A computer simulation program was then used to simulate the working of the magnetic bearing stack. Real time plots from the simulation are used to show the effect of dynamic coupling on torque response. Frequency response is used to determine the resonance frequencies of the stack system. It is found that system stability depends on flywheel speed. On the basis of the above results suggestions are made to improve stability and allow the stack to be spun beyond 60,000 rpm.


Robotica ◽  
1996 ◽  
Vol 14 (6) ◽  
pp. 667-675 ◽  
Author(s):  
Fengfeng Xi

In this paper a new method is presented for solving the inverse kinematics of free-floating space manipulators. The idea behind the method is to move the space manipulator along a path with minimum dynamic disturbance. The method is proposed to use the manipulator Jacobian instead of the generalized Jacobian of the spacecraft-manipulator system. This is based on the simple fact that, if the space manipulator moves along the so-called Zero Disturbance Path (ZDP), the spacecraft is immovable. As a result, the space manipulator can in this case be treated as a terrestrial fixed-based manipulator. Hence, the motion mapping between the joints and the end-effector can be described directly by the manipulator Jacobian. In the case that the ZDP does not exist, it can be shown that the solutions obtained by the proposed method provide a path with minimum dynamic disturbance.


2015 ◽  
Vol 744-746 ◽  
pp. 920-923
Author(s):  
Zhao Bo Meng ◽  
Yu Cao ◽  
Jie Jin

Taking Liaocheng Guangyue tower as an example, based on the on-site measurements, to determine its dynamic characteristics and provide a basis by numerical analysis method for determining traffic incentive effect on the ancient timber buildings. From the research, we can conclude that the first-order self-vibration frequency of Guangyue tower can be taken as 1.638Hz, the corresponding natural vibration period is 0.61s,the damping ratio is 1.098.


Author(s):  
Karim Abdel-Malek ◽  
Harn-Jou Yeh

Abstract An analytical method is presented to obtain all boundary surfaces to the accessible output set of four degree-of-freedom serial manipulators. The method is applicable to all manipulators that comprise combinations of prismatic and revolute joints. Position constraints of the end-effector of such mechanisms are formulated using the Denavit-Hartenberg representation. Examining the Jacobian of the underlying mechanism using a row-rank deficiency method yields sets of first-order singularities. These sets of singularities are substituted into the position constraint equations yielding parametric surfaces upon which the manipulator looses at least one degree of mobility. Singular curves are determined by intersecting singular surfaces. Due to the complexity of intersecting parametric singular surfaces, the resultant singular curves are numerically computed. Bifurcation points are identified and tangents are computed. Singular surfaces are partitioned into sub-surfaces that are studied for existence inside the accessible output set using a proposed perturbation technique. The result is a number of sub-surfaces that envelop the accessible output set. The theory presented is validated using a four-degree-of-freedom example.


Sign in / Sign up

Export Citation Format

Share Document