scholarly journals Simultaneous Analysis of Twelve Bile Acids by UPLC-MS and Exploration of the Processing Mechanism of Bile Arisaema by Fermentation

2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Qimiao Zhao ◽  
Guoshun Shan ◽  
Dan Xu ◽  
Hui Gao ◽  
Ji Shi ◽  
...  

Ultrahigh-performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight tandem mass spectrometry (Q/TOF-MS) in the MS/MS mode and UPLC coupled with triple quadrupole mass spectrometry (QqQ-MS) using the multiple reaction monitoring (MRM) mode were used to make a qualitative and quantitative analysis of twelve bile acids in Bile Arisaema. The fragmentation pathway of twelve bile acids was proposed. The quantification method showed a good linearity over a wide concentration range (R2 > 0.99), repeatability (RSD < 4.12%), stability (RSD < 4.25%), precision (RSD < 4.06%), and recovery (95.36–102.15%). Content of twelve compounds in Bile Arisaema varied significantly depending on region. Chemometric methods, hierarchical clustering analysis (HCA), and principal components analysis (PCA) were successfully used to optimize the fermentation time of the Bile Arisaema. The results suggested that the Bile Arisaema could complete fermentation in 15 days. The possible processing mechanism of Bile Arisaema promoted the transformation of conjugated bile acids into free bile acids in fermentation.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Herbert Júnior Dias ◽  
Ricardo Stefani ◽  
José Carlos Tomaz ◽  
Ricardo Vessecchi ◽  
Antônio Eduardo Miller Crotti

We investigated the fragmentation of the eudesmanolide-type sesquiterpene lactones 1α-(4-hydroxymethacryloyloxy)-3α,4α-epoxy-8α-hydroxyeudesm-11(13)-6α,12-olide (1) and 1α-(2,3-epoxyangeloyloxy)-4α,15-epoxy-8α-hydroxyeudesm-11(13)-6α,12-olide (2) by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The elimination of the different ester substituent at C(1) directly from protonated 1 and 2 (A) led to the formation of two regioisomer product ions B (A − RCO2H). Further fragmentation of B resulted from consecutive eliminations of H2O and CO molecules. However, we identified four product ions that allowed for the differentiation between 3,4- and 4,15-epoxyeudesmanolides. The formation of these diagnostic ions was associated with the C(3)–O bond of compound 1, which propitiates the participation of the lone pair of the oxygen epoxide in the formation of B through a Grob-Wharton-type fragmentation, then resulting in an alternative fragmentation pathway. These data can be useful for the fast differentiation between epoxyeudesmanolide regioisomers directly from Dimerostemma extracts by liquid chromatography-tandem mass spectrometry (LC-MS/MS), as an alternative to NMR, or even for quantitation studies of these compounds using multiple reaction monitoring (MRM) scan.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Quan Zhou ◽  
Jianshe Ma ◽  
Limei Chen

Hirsutine and hirsuteine were two alkaloid monomers extracted from the traditional Chinese medicine Uncaria rhynchophylla, which have pharmacological effects such as antihypertension, anti-infection, and heart protection. An ultrahigh-performance liquid chromatography-mass spectrometry was established for the determination of hirsutine and hirsuteine in tissues (liver, kidney, heart, spleen, brain, and lung), and their absorption, distribution, and metabolism were studied for providing information on its pharmacological mechanism. UPLC BEH C18 column (2.1  mm × 100  mm, 1.7 μm) was used for chromatographic separation. The mobile phase was acetonitrile-0.1% formic acid, with a gradient elution, and the total run time was 4 min. Electrospray was used in the positive ion mode, and the multiple reaction monitoring (MRM) mode was for quantification. The acetonitrile precipitation method was used to remove protein-treated mouse plasma and tissue homogenate samples. In the concentration range of 2–5000 ng/g, hirsutine and hirsuteine in tissues showed good linearity (r > 0.995), and the lower limit of quantification was 2 ng/g. In the plasma and liver tissues, the interday and intraday precision of hirsutine and hirsuteine was less than 15%, the accuracy was between 90.9% and 110.1%, and the average recovery was better than 73.0%. The matrix effect was between 86.2% and 104.7%. The results showed that the precision, accuracy, recovery, and matrix effects meet the requirements for the study on the distribution of hirsutine and hirsuteine. After intraperitoneal administration of 10 mg/kg hirsutine and hirsuteine in mice, the distribution levels were highest in liver and kidney tissues, followed by the spleen and lung. Hirsutine and hirsuteine were low in brain tissue, but had obvious distribution, suggesting that they may pass through the blood-brain barrier.


2020 ◽  
Vol 58 (5) ◽  
pp. 787-797 ◽  
Author(s):  
Xiaowei Fu ◽  
Yi Xiao ◽  
Jamie Golden ◽  
Sizhe Niu ◽  
Christopher P. Gayer

AbstractBackgroundA method for bile acid profiling measuring 21 primary and secondary bile acids in serum samples was developed and validated with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample preparation included spiking with internal standards followed by protein precipitation, centrifugation, drying under nitrogen gas and reconstitution. Extracted samples were injected onto a Phenomenex Kinetex C18 column (150 × 4.60 mm, 2.6 μm).MethodsData was collected with LC-MS/MS operated in negative ion mode with multiple reaction monitoring (MRM) and single reaction monitoring (SRM). The analytical run time was 12 min.ResultsThe method showed excellent linearity with high regression coefficients (>0.99) over a range of 0.05 and 25 μM for all analytes tested. The method also showed acceptable intra-day and inter-day accuracy and precision. As a proof of concept, the analytical method was applied to patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), biliary atresia (BA), and necrotizing enterocolitis (NEC), and distinct bile acids profiles were demonstrated.ConclusionsThe method could be poised to identify possible biomarkers for non-invasive early diagnosis of these disorders.


1996 ◽  
Vol 51 (4) ◽  
pp. 1043-1047
Author(s):  
Masami MOROTOMI ◽  
Yukiko SAKAITANI ◽  
Mikiko SATOU ◽  
Takuya TAKAHASHI ◽  
Takashi MAKINO

2019 ◽  
Vol 15 (7) ◽  
pp. 710-715
Author(s):  
S.T. Narenderan ◽  
Basuvan Babu ◽  
T. Gokul ◽  
Subramania Nainar Meyyanathan

Objective: The aim of the present work is to achieve a novel highly sensitive chromatographic method for the simultaneous determination of hepatitis C agents, sofosbuvir and velpatasvir from human plasma using ritonavir as an internal standard. Methods: Chromatographic separation was achieved using Hypersil C18 column (50mm x 4.6mm, 3μm) with an isocratic elution mode using the mobile phase composition 10 mM ammonium formate buffer (pH 5.0): acetonitrile (20:80 v/v) pumped at a flow rate of 0.5 ml/min. The detection was carried out by tandem mass spectrometry using Multiple Reaction Monitoring (MRM) positive Electrospray Ionization (ESI) with proton adducts at m/z 530.10 > 243.10, 883.40 > 114.0 and 721.25 > 197.0. Results: The method validated as per USFDA guidelines with respect to linearity, accuracy, and precision was found to be acceptable over the concentration range of 0.2–2000 ng/ml and 5-2000 ng/ml for sofosbuvir and velpatasvir respectively and the method was found to be highly sensitive and selective. Conclusion: The developed tandem mass spectrometric method is robust and can be applied for the monitoring of plasma levels of the analyzed drug in preclinical and clinical pharmacokinetic studies.


Sign in / Sign up

Export Citation Format

Share Document